Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:34:39.694Z Has data issue: false hasContentIssue false

Hot-Wire CVD Poly-Silicon Films for Thin Film Devices

Published online by Cambridge University Press:  10 February 2011

J.K. Rath
Affiliation:
Debye Institute, Utrecht University, P.O.Box 80000, 3508 TA Utrecht, the Netherlands
F.D. Tichelaar
Affiliation:
National centre for HREM, Rotterdamseweg 137, 2628 AL Delft, the Netherlands
H. Meiling
Affiliation:
Debye Institute, Utrecht University, P.O.Box 80000, 3508 TA Utrecht, the Netherlands
R.E.I. Schropp
Affiliation:
Debye Institute, Utrecht University, P.O.Box 80000, 3508 TA Utrecht, the Netherlands
Get access

Abstract

Solar cell using profiled poly-Si:H by HWCVD as i-layer in the configuration SS/n-µSi:H(PECVD)/i-poly-Si:H(HWCVD)/p-µc-Si:H(PECVD)/ITO showed 3.7% efficiency. A current of 23.6 mA/cm2 was generated in only 1.5 µm thick poly-Si:H i-layer grown at ∼5Å/s. TFTs made with the poly-Si:H films (grown at ≥ 9Å/s) exhibited remarkable stability to long duration of 23 hours of gate bias stress of ∼lMV/cm. A saturation mobility of 1.5 cm2/Vs for the TFT has been achieved. Films made at low hydrogen dilution (Poly2) showed device quality (purely intrinsic nature, ambipolar diffusion length of 568 nm, only (220) oriented growth and low ESR defect density of <1017/cm3with complete absence of signal due to conduction electrons) but with an incubation phase of amorphous initial growth, whereas the films made at high hydrogen dilution (Polyl) had a polycrystalline initial growth, though with higher defect density, incorporated oxygen and randomly oriented grains. Poly2 films are compact and hydrogen bonding is at compact Si-H sites manifested as 2000 cm−1IR vibration and high temperature hydrogen evolution peak. Exchange interaction of spins and spin pairing are observed while increasing defects in such a compact structure. A new approach has been used to integrate these two regimes of growth to make profiled poly-Si:H layers. The new layers show good electronic properties as well as complete elimination of incubation phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Yamomoto, K., Suzuki, T., Yoshimi, M., Nakajima, A, Proc.14th EPVSEC, Barcelona, p1018 (1997).Google Scholar
2 Meier, J. et al. , J.Non-Cryst. Solids (in print).Google Scholar
3 Meier, J. et al. , (this conference).Google Scholar
4 Keppner, H. et al. , Mat. Res. Soc. Symp. Proc., 452, 865 (1997).Google Scholar
5 Hapke, P. and Finger, F., J.Non-Cryst. Solids (in print).Google Scholar
6 Hwang, H.L. et al. , Progress in Photovoltaics: Research and Application, 4, 165 (1996).Google Scholar
7 Rath, J.K., Meiling, H., Schropp, R.E.I., Jpn. J. Appl. Phys., 36, 5436 (1997).Google Scholar
8 Cifre, J. et al. , Appl. Phys.A, 59, 1704 (1995).Google Scholar
9 Guillet, J. et al. , Proc. 14th EPVSEC, Barcelona, p1475 (1997).Google Scholar
10 Matsumura, H., Heya, A., Iizuka, R., Izumi, A., He, A., Otsuka, N., Mat. Res. Soc. Symp. Proc., 452, 983 (1997).Google Scholar
11 Wanka, H.N. et al. , Proc. 14th EPVSEC, Barcelona, p1003 (1997).Google Scholar
12 Rath, J.K. et al. , Tech. Digest Int. PVSC–9, p 227 (1996).Google Scholar
13 Rath, J.K. et al. , Mat. Res. Soc. Symp. Proc., 467, 445 (1997).Google Scholar
14 Schropp, R.E.I., Feenstra, K.F., Molenbroek, E.C., Meiling, H., Rath, J.K.., Phil. Mag. B., 76, 309 (1997).Google Scholar
15 Meier, J. et al. , Mat. Res. Soc. Symp. Proc., 420, 3 (1996).Google Scholar
16 Ishihara, S., He, D., Nakata, M., Shimizu, I.., Jpn. J. Appl. Phys., 32, 1539 (1993).Google Scholar
17 Feenstra, K.F. et al. , Mat. Res Soc. Symp. Proc., 467, 645 (1997).Google Scholar
18 Rath, J.K., Barbon, A., Schropp, R.E.I., J. Non-Cryst. Solids (in print).Google Scholar
19 Rath, J.K., Meiling, H., Schropp, R.E.I., Sol. Energy Mater. Solar. Cells, 48, 269 (1997).Google Scholar
20 Klug, H.P. and Alexander, L.E., X-ray Diffraction Procedure (John Wiley & Sons, New York, 1974).Google Scholar
21 Patel, J.R., Semiconductor Silicon 1981 (Electrochem. Soc. Pennington, 1981) p 189.Google Scholar
22 Rath, J.K., Ruff, D., Meiling, H., Schropp, R.E.I., Mat. Res. Soc. Symp. Proc., 452, 977 (1996).Google Scholar
23 Beyer, W., Physica B, 170, 105 (1991).Google Scholar
24 Ito, T. et al. , Mat. Res. Soc. Symp. Proc. 164, 205 (1990).Google Scholar
25 Finger, F. et al. , Mat Res. Soc. Symp. Proc., 219, 383 (1991).Google Scholar
26 Rath, J.K., Cleef, M.W.M. van, Schropp, R.E.I., Proc. 14th EPVSEC, Barcelona, p597 (1997).Google Scholar
27 Will, D., Lemer, C., Fuhs, W., Lips, K., Mat. Res. Soc. Symp. Proc., 467, 361 (1997).Google Scholar
28 Rath, J.K., Barbon, A, Faassen, E.E. van, Schropp, R.E.I. (to be published).Google Scholar
29 Iqbal, Z., Sarrot, F.S.A., Veprek, S., J.Phys. C: Solid State Phys., 16, 2005 (1983).Google Scholar
30 Meiling, H., Brockhoff, A.K., Rath, J.K., Schropp, R.E.I. (this conference).Google Scholar
31 Rath, J.K. et al. , 25' IEEE PVSEC, Washington D.C., p1101 (1996).Google Scholar