Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:18:01.850Z Has data issue: false hasContentIssue false

Hot Spots from Dislocation Pile-up Avalanches

Published online by Cambridge University Press:  26 February 2011

William Grisé*
Affiliation:
[email protected], Morehead State University, Industrial and Engineering Technology, Dept. of IET, RM LC-105C, Morehead State University, Morehead, KY, 40351, United States, 606-783-2424, 606-783-2424
Get access

Abstract

The model of localized adiabatic heating associated with release of a dislocation pile-up avalanche is described and re-evaluated. The model supplies a fundamental explanation of shear banding behavior in metal and non-metal systems. Now, a dislocation dynamics description is provided for more realistic assessment of the hot spot heating, for both straight dislocation pile-ups and circular loop pile-ups. Such a localized heating effect was overestimated in the earlier work, in part, to show the dramatic enhancement of the work rate, and the corresponding temperature build-up, potentially occurring in the initial pile-up release, say, at achievement of the critical dislocation mechanics-based stress intensity for cleavage. Proposed applications are to potentially brittle metal, ionic, and energetic material systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Armstrong, R. W., Coffey, C.S. and Elban, W. L., Acta Metall. 30, 2111 (1982).Google Scholar
2. Armstrong, R. W., and Elban, W. L., Mater. Sci. Eng. A 122, L1 (1989).Google Scholar
3. Armstrong, R.W., Coffey, C.S., DeVost, V.F., and Elban, W.L., J. Appl. Phys. 68, 979 (1990).Google Scholar
4. Armstrong, R.W., Ammon, H.L., Elban, W.L., and Tsai, D.H., Thermochim. Acta, 384, 303 (2002).Google Scholar
5. Armstrong, R.W., and Elban, W.L., Mater. Sci. Eng. A 111, 35 (1989).Google Scholar
6. Armstrong, R.W., and Elban, W.L., Dislocations in Solids edited by Nabarro, F. R. N. and Hirth, J. P., Elsevier Sci. Publ., Oxford, U.K., 2004, 12, p. 403.Google Scholar
7. Armstrong, R.W., and Elban, W.L., Mater. Sci. Tech., in print.Google Scholar
8. Armstrong, R.W., Mater. Sci. Eng. A, in print.Google Scholar
9. Gerstle, F.P., and Dvorak, G.J., Philos. Mag. 29, 1337; Ibid., 1347 (1974).Google Scholar
10. Taylor, G.I., and Quinney, H., Proc. Roy. Soc., Lond., A 143, 307 (1934);Google Scholar
Zerilli, F.J., and Armstrong, R.W., Shock Compression of Condensed Matter – 1997, edited by Schmidt, S., Dandakar, D. and Forbes, J.W., Amer. Inst. Phys., N.Y., 1998, CP429, p. 215.Google Scholar
11. Grisé, W. R., Dislocation Pile-Ups and Their Role in Nanosized Crystal Hotspots, NRC/ AFOSR SFFP Report, Eglin AFB, FL. 2003.Google Scholar
12. Armstrong, R. W., and Grisé, W.R., Proceedings of the 14th APS Topical Conference on Shock Compression of Condensed Matter – 2005, edited by Furnish, Michael, Amer. Inst. Phys., N.Y., 2005.Google Scholar
13. Li, J.C.M., and Liu, G.C.T., Philos. Mag. 15, 1059 (1967).Google Scholar
14. Smith, T.R., Armstrong, R.W., Hazzledine, P.M., Masumura, R.A., and Pande, C.S., Mat. Res. Soc. Symp. Proc., Vol.362, 31 (1995).Google Scholar
15. Armstrong, R.W., and Smith, T.R., Processing and Properties of Nanocrystalline Materials, edited by Suryanarayana, C., Singh, J., and Froes, F.H., The Minerals, Metals & Materials Society, 1996, p. 345.Google Scholar
16. Gilman, J.J., Shock Compression of Condensed Matter – 2001, edited by Furnish, M. D., Thadhani, N. N., and Horie, Y., Amer. Inst. Phys., 2002, CP620, p. 36.Google Scholar
17. Gilman, J.J., email correspondence, July, 2005.Google Scholar
18. Levitas, V. I., Phys. Lett. A, 327, 180 (2004).Google Scholar
19. Ryazanov, A.I., Pavlov, S.A., and Kiritani, M., Mat. Sci. & Eng. A, A00, 16 (2003).Google Scholar
20. Ravichandran, G., Rosakis, A., Hodowany, J., and Rosakis, P., Shock Compression of Condensed Matter – 2001, edited by Furnish, M. D., Thadhani, N. N., and Horie, Y., Amer. Inst. Phys., 2002, P620, p. 557.Google Scholar
21. Tsai, D., and Armstrong, R.W., J. Phys. Chem., 98, 10997 (1994).Google Scholar
22. Zerilli, F.J., and Armstrong, R.W., J. Appl. Phys., 61, 1816 (1987).Google Scholar