Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:40:05.349Z Has data issue: false hasContentIssue false

Hot Embossing of Microfluidic Channel Structures in Cyclic Olefin Copolymers

Published online by Cambridge University Press:  01 February 2011

Patrick William Leech
Affiliation:
[email protected], CSIRO, Gate 5 Normanby Rd, Clayton, 3169, Clayton, Victoria, 3169, Australia
Xiaoqing Zhang
Affiliation:
[email protected], CSIRO, CMSE, Clayton, Victoria, Victoria, Australia
Yonggang Zhu
Affiliation:
[email protected], CSIRO, Materials Science and Engineering, Highett, Victoria, Australia
Get access

Abstract

The dynamic mechanical behaviour of a series of cyclic olefin copolymers (COCs) with varying norbornene content has been examined in the vicinity of the glass transition temperature, Tg. The temperature of the transition has been shown to increase linearly with increase in norbornene content. Measurements of both the elastic storage modulus, E′, and loss modulus, E″, have decreased exponentially with rise in temperature above Tg . A levelling-off in E″ occurred at >20 °C above Tg for all copolymers. The results of Dynamic Mechanical Thermal Analysis (DMTA) have been used in the identification of optimum conditions for hot embossing. At >20 °C above Tg in a region of viscous liquid flow, the hot embossing of COC has resulted in a full replication of channel depth without cracking or distortion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 McNally, D. in Encyclopedia of Polymer Science and Technology, Vol. 2, 3rd Ed, Mark, H.F. Ed., Wiley, Hoboken NJ, 489 (2003).Google Scholar
2 Shin, J.Y., Park, J.Y., Liu, C., He, J. and Kim, S.C., Pure Appl.Chem. 77(5), 801 (2005).Google Scholar
3 Forsyth, J.F., Scrivani, T., Benavente, R., Marestin, C. and Perena, J.M., J. Appl. Polymer Sci. 82, 2159 (2001).Google Scholar
4 Scrivani, T., Benaventure, R., Perez, E. and Perena, J.M., Macromol.Chem.Phys. 202, 2547 (2001).Google Scholar
5 Seydewitz, V., Krumova, M., Michler, G.H., Park, J.Y. and Kim, S.C., Polymer 46, 5608 (2005).Google Scholar
6 Forsyth, J.F., Perena, J.M., Benavente, R., Perez, E., Tritto, I., Boggioni, L. and Brintzinger, H-H., Macromol.Chem.Phys. 202, 614 (2001).Google Scholar
7 Cameron, N.S., Roberge, H., Veres, T., Jakeway, S.C. and Crabtree, H.J., Lab Chip 6, 936 (2006).Google Scholar
8 Steigert, J., Haeberle, S., Brenner, T., Müller, C., Steinert, C.P., Koltay, P., Gottschlich, N., Reinecke, H., Rühe, J., Zengerle, R. and Ducré, J., J.Microm.Microeng. 17, 333 (2007).10.1088/0960-1317/17/2/020Google Scholar
9 Hong, C-C, Choi, J-W. and Ahn, C.H., Lab. Chip. 4, 109 (2004).Google Scholar
10 Mair, D.A., Geiger, E., Pisano, A.P., Fréchet, J.M.J. and Svec, F., Lab Chip 6, 1346 (2006).Google Scholar
11 Shan, X., Liu, Y.C. and Lam, Y.C., Microsyst. Technol. 14, 1055 (2008).Google Scholar
12 Guo, L.J., Journal of Physics D:Applied Physics, 37, R123 (2004).Google Scholar