Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-04T19:35:56.387Z Has data issue: false hasContentIssue false

Hot Electron Phenomena in Transport Across Metal-Semiconductor Structures

Published online by Cambridge University Press:  21 February 2011

R. Ludeke
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, N.Y. 10598
A. Bauer
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, N.Y. 10598
Get access

Abstract

Ballistic Electron Emission Microscopy (BEEM) is shown to be a versatile spectroscopic tool to investigate scattering phenomena of energetic electrons. Two examples are given for obtaining numerical values of scattering parameters. Thus the elastic and inelastic mean free paths are deduced from model fits to attenuation data for thin Pd films deposited on Si(111) and Si(100) substrates. In the second example, the quantum yield for electron-hole pair production through impact ionization of hot carriers injected into Si(111) is directly measured over an energy range from 1-7 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Crowell, C.R. and Sze, S.M., in Physics of Thin Films, Vol. 4, edited by Hass, G. and Thun, R.F. (Academic Press, N.Y., 1967), p. 325.Google Scholar
2 Luryi, S., in High-Speed Semiconductor Devices, edited by Sze, S.M. (John Wiley, N.Y., 1990), p. 419.Google Scholar
3 for a recent review see: Hot Carriers in Semiconductors Nanostructures edited by Shah, J. (Academic Press, Inc., Boston, 1992)Google Scholar
4 Cartier, E., Fischetti, M.V., Eklund, E.A. and McFeely, F.R., Appl. Phys. Lett. 62, 3339 (1993).CrossRefGoogle Scholar
5 Lang, N.D., Yacoby, A. and Imry, Y., Phys. Rev. Lett. 63, 1499 (1989).Google Scholar
6 Stroscio, J.A. and Feenstra, R.M. in Scanning Tunneling Microscopy, edited by Stroscio, J.A. and Kaiser, W.J. (Academic Press, Boston, 1993) pp. 95147.Google Scholar
7 Bell, L.D.. Kaiser, W.J., Hecht, M.H. and Davies, L.C. in Scanning Tunneling Microscopy, edited by Stroscio, J.A. and Kaiser, W.J. (Academic Press, Boston, 1993) pp. 307348.Google Scholar
8 Bell, L.D. and Kaiser, W.J., Phys. Rev. Lett. 61, 2368 (1988).Google Scholar
9 Schowalter, L.J. and Lee, E.Y., Phys. Rev. B 43, 9308 (1991).CrossRefGoogle Scholar
10 Ludeke, R., Prietsch, M. and Samsavar, A., J. Vac. Sci. Technol. B 9, 2342 (1991).Google Scholar
11 Ludeke, R., Phys. Rev. Lett. 70, 214 (1993).Google Scholar
12 Ludeke, R. and Bauer, A., Phys. Rev. Lett. 71, 1760 (1993).Google Scholar
13 Ludeke, R. and Bauer, A., unpublished.Google Scholar
14 see for example Monte Carlo Device Simulation: Full Band and Beyond, edited by Hess, K. (Kluwer Academic Publishers, Boston, 1991?).CrossRefGoogle Scholar
15 Quinn, J.J., Phys. Rev. 126, 1453 (1962); Appl. Phys. Lett. 2, 167 (1963).CrossRefGoogle Scholar
16 Kim, K.H., Chung, K.S., Lee, J.J., Park, T.S. and Lee, W.H., Korean Phys. Soc. 22, 426 (1989) and references therein.Google Scholar
17 Bauer, A. and Ludeke, R., unpublishedGoogle Scholar
18 Drummond, W.E. and Moll, J.L., J. Appl. Phys. 42, 5556 (1971).Google Scholar
19 Ludeke, R., Phys. Rev. Lett. 70, 214 (1993); J. Vac. Sci. Technol. A 11 , 786 (1993).CrossRefGoogle Scholar
20 Bauer, A., Cuberes, M.T., Prietsch, M. and Kaindl, G., Phys. Rev. Lett. 71, 149 (1993); J. Vac. Sci. Technol. B 11 1584 (1993).CrossRefGoogle Scholar
21 Alig, R.C., Bloom, S., and Struck, C.W., Phys. Rev. B 22, 5565 (1980).CrossRefGoogle Scholar
22 Tung, R.T., Gibson, J.M., and Poate, J.M., Phys. Rev. Lett. 50, 429 (1983).CrossRefGoogle Scholar
23 Jackson, W.B. and Allen, J.W., Phys. Rev. B 37, 4618 (1988).Google Scholar