Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:30:06.171Z Has data issue: false hasContentIssue false

Homoepitaxial Growth of Si at Low Temperature (325 °C)

Published online by Cambridge University Press:  10 February 2011

J. Platen
Affiliation:
Hahn-Meitner-Institut, Rudower Chaussee 5, D-12489 Berlin, Germany
B. Selle
Affiliation:
Hahn-Meitner-Institut, Rudower Chaussee 5, D-12489 Berlin, Germany
I. Sieber
Affiliation:
Hahn-Meitner-Institut, Rudower Chaussee 5, D-12489 Berlin, Germany
U. Zeimer
Affiliation:
Hahn-Meitner-Institut, Rudower Chaussee 5, D-12489 Berlin, Germany Ferdinand-Braun-Institut, Rudower Chaussee 5, D-12489 Berlin, Germany
W. Fuhs
Affiliation:
Hahn-Meitner-Institut, Rudower Chaussee 5, D-12489 Berlin, Germany
Get access

Abstract

Electron cyclotron resonance chemical vapor deposition (ECR-CVD) is used to grow to prepare epitaxial films on Si(100), Si(111), and Si(311) at 325 °C with a growth rate of 10…12 nm/min. On Si(100) up to a layer thickness of more than 300 nm the films exhibit a well defined and smooth interface and a perfectly ordered lattice structure. Beyond a critical thickness of about 500 nm the formation of conically shaped, amorphous regions was observed. At a thickness of 1.6 µm only 10… 15 % of the surface consists of these amorphous cones. On Si(311), Si(111), and Si(011) the critical epitaxial thicknesses hepi depends on the crystallographic orientation of the substrate in the sequence hepi(311) > hepi(111) > hepi(011) with an abrupt change of the film structure from crystalline to amorphous

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bergmann, R. B., Hausner, R. M., Jensen, N., Grauvogl, M., Overbeck, L., Rinke, T., Schubert, M. B., Zaczek, C., Dassow, R., Köhler, J. R., Rau, U., Oelting, S., Krinke, J., Strunk, H. P., Werner, J. H., Proceed. 2nd World Conf. on Photovolt. Energy Conv. 1998, Wien, p. 1260 Google Scholar
2. Comfort, J. H., Reif, R., J. Electrochem. Soc. 136, 2398 (1989)Google Scholar
3. Bergmann, R. B., Zacsek, C., Jensen, N., Oelting, S., Wemer, J. H., Appl. Phys. Lett. 72, 2996 (1998)Google Scholar
4. Conrad, E., Elstner, L., Fuhs, W., Henrion, W., Müller, P., Poortmans, J., Selle, B., Zeimer, U., Proceed. 14th European Photovoltaic Solar Energy Conference 1997, Barcelona, p. 1411 Google Scholar
5. Eaglesham, D. J., Gossmann, H.-J., Cerullo, M., Phys. Rev. Lett. 65, 1227 (1990)Google Scholar
6. Jorke, H., Herzog, H.-J., Kibbel, H., Phys. Rev. B 40, 2005 (1989)Google Scholar
7. Tagaki, S., J. Phys. Soc. Japan 26, 1239 (1969)Google Scholar
8. Taupin, D., Bull. Soc. Fr. Mineral. Crystallogr. 87, 469 (1964)Google Scholar
9. Adams, D. P., Yalisove, S. M., Eaglesham, D. J., App. Phys. Lett. 63, 3571 (1993)Google Scholar
10. Murty, M. V. Ramana, Atwater, H. A., Kellock, A. J., Baglin, J. E. E., Appl. Phys. Lett. 62, 2566 (1993)Google Scholar
11. Varhue, W. J., Rogers, J. L., Andry, P. S., Adams, E., Appl. Phys. Lett. 68, 349 (1996)Google Scholar
12. Lee, N. E., Tomasch, G. A., Greene, J. E., Appl. Phys. Lett. 65, 3236 (1994)Google Scholar
13. Adams, D. P., Yalisove, S. M., J. Appl. Phys. 76, 5185 (1994)Google Scholar
14. Eaglesham, D. J., J. Appl. Phys. 77, 3597 (1995)Google Scholar
15. Yamada, H., Torii, Y., J. Appl. Phys. 64, 702 (1988)Google Scholar
16. Weir, B. E., Freer, B. S., Headrick, R. L., Eaglesham, D. J., Gilmer, G. H., Bevk, J., Feldman, L. C., Appl. Phys. Lett. 59, 204 (1991)Google Scholar
17. Venkatasubramanian, R., Gorantla, S., Muthuvenkatraman, S., Dorsey, D. L., J. Appl. Phys. 80, 6219 (1996)Google Scholar
18. Yamamoto, Y., Phys. Rev. B 50, 8534 (1994)Google Scholar