Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T23:35:11.918Z Has data issue: false hasContentIssue false

Holographic Atom Imaging from Experimental Photoelectron Angular Distribution Patterns

Published online by Cambridge University Press:  21 February 2011

L. J. Terminello
Affiliation:
Lawrence Livermore National Laboratory, M/S L-357, Livermore, CA 94550
D. A. Lapiano-Smith
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
J. J. Barton
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
B. L. Petersen
Affiliation:
Lawrence Berkeley Laboratory, M/S 2-300, 1 Cyclotron Rd. Berkeley, CA 94720
D. A. Shirley
Affiliation:
Pennsylvania State University, Kern Graduate Building, University Park, PA 16802
Get access

Abstract

One of the most challenging areas of materials research is the imaging of technologically relevant materials with microscopic and atomic-scale resolution. As part of the development of these methods, near-surface atoms in single crystals were imaged using core-level photoelectron holograms. The angle-dependent electron diffraction patterns that constitute an electron hologram were two-dimensionally transformed to create a three dimensional, realspace image of the neighboring scattering atoms. We have made use of a multiplewavenumber, phased-summing method to improve the atom imaging capabilities of experimental photoelectron holography using the Cu(001) and Pt(111) prototype systems. These studies are performed to evaluate the potential of holographic atom imaging methods as structural probes of unknown materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Szöke, A..in Short Wavelength Coherent Radiation: Generation and Applications, AIP Conference Proceedings No. 147, American Institute of Physics, New York, 1986.Google Scholar
2. Barton, J. J., Phys. Rev. Lett. 61, 1356 (1988).Google Scholar
3. Tonner, B. P., Han, Zhi-Lan, Harp, G. R., and Saldin, D. K., Phys. Rev. B 43, 14423 (1991).Google Scholar
4. Tong, S. Y., Wei, C. M, Zhao, T. C., Huang, H., and Li, Hua, Phys. Rev. Lett. 66, 60 (1991).Google Scholar
5. Herman, G. S., Thevuthasan, S., Kim, Y. J., Tran, T. T., and Fadley, C. S., Phys. Rev. Lett. 68, 650 (1992).Google Scholar
6. Harp, G. R., Saldin, D. K., and Tonner, B. P., Phys. Rev. Lett. 65, 1012 (1990); G. R. Harp, D. K. Saldin, and B. P. Tonner, Phys. Rev. B 42, 9199 (1990).Google Scholar
7. Han, Z. L., Hardcastle, S., Harp, G. R., Li, H., Wang, X. D., Zhang, J., and Tonner, B. P., Surf. Sci. 258, 313 (1991).Google Scholar
8. Thevuthasen, S., Herman, G. S., Kaduwela, A. P., Saiki, R. S., Kim, Y. J., and Fadley, C. S., Phys. Rev. Lett. 67, 469 (1991).Google Scholar
9. Huang, H., Li, Hua, and Tong, S. Y., Phys. Rev. B 44, 3240 (1991).Google Scholar
10. Wei, C. M., Zhao, T. C., and Tong, S. Y., Phys. Rev. Lett. 65, 2278 (1990).Google Scholar
11. Barton, J. J. and Terminello, L. J., In Tong, S. Y., Hove, M. A.Van, Xide, X., and Takayanagi, K., editors, Structure of Surfaces III, Milwaukee, WI, USA Springer-Verlag, 1991.Google Scholar
12. Barton, J. J., Phys. Rev. Lett. 67, 3106 (1991).Google Scholar
13. Terminello, L. J., Lapiano-Smith, D. A., and Barton, J. J., J. Vac. Sci. and Technol. B 10, 2088 (1992), and L. J. Terminello, J. J. Barton, and D. A. Lapiano-Smith, Phys. Rev. Lett. 70, 599 (1993).CrossRefGoogle Scholar
14. Petersen, B. L., Terminello, L. J., Barton, J. J., and Shirley, D. A., Chem Phys. Lett. 213 (3,4), 412 (1993), and Mater. Res.. Soc. Symp. Proc. 307, 285 (1993).Google Scholar
15. Terminello, L. J., Zhang, X. S., Huang, Z. Q., Kim, S. H., Wittenau, A. E. Schach von, Leung, K. T., and Shirley, D. A., Phys. Rev. B 38, 3879 (1988).CrossRefGoogle Scholar
16. Fadley, C. S., in Synchrotron Radiation Research: Advances in Surface Science, edited by Bachrach, R. Z. (Plenum, New York, 1993); S. A. Chambers, Surf Sci. Reports 16, 261 (1992); W. F. Egelhoff, Jr. in Critical Reviews in Solid State and Materials Sciences, 16, 213 (1990); H. P. Bonzel, Prog. in Surf Sci. 42, 219 (1993); A. M. Bradshaw and D. P. Woodruff, Applications of Synchrotron Radiation: High-Resolution Studies of Molecules and Molecular Adsorbates on Surfaces, edited by W. Eberhardt (Springer-Verlag, Berlin, 1993).Google Scholar
17. Bahr, C. C., Barton, J. J., Hussain, Z., Robey, S. W., Tobin, J. G., and Shirley, D. A., Phys. Rev. B 35, 3773 (1987).Google Scholar
18. Eastman, D. E., Donelon, J. J., Hien, N. C., and Himpsel, F. J., Nucl. Instrum. and Meth. 172, 327 (1980).CrossRefGoogle Scholar
19. Himpsel, F. J., Jugnet, Y., Eastman, D. E., Donelon, J. J., Grimm, D., Landgren, G., Marx, A., Morar, J. F., Oden, C., Pollack, R. A., Schneir, J., and Crider, C.,.Nucl. Instrum. Methods Phys. Res. 222, 107 (1984).Google Scholar
20. Barton, J. J. and Shirley, D. A., Phys. Rev. A 32, 1019 (1985).Google Scholar
21. Terminello, L. J. and Barton, J. J., to be published.Google Scholar
22. Hardcastle, D., Z.-L. Han, Harp, G. R., Zhang, J., Chen, B. L., Saldin, D. K., and Tonner, B. P., Surf. Sci. 245, L190 (1991).Google Scholar
23. Barton, J. J., Bahr, C. C., Robey, S. W., Hussain, Z., Umbach, E., and Shirley, D. A., Phys. Rev. B 34, 3807 (1986).Google Scholar