Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:32:09.278Z Has data issue: false hasContentIssue false

Hollow ZnO Nano-cone Synthesis via Catalyst Free MOCVD

Published online by Cambridge University Press:  22 August 2011

Wei Zhang
Affiliation:
CVD Equipment Corporation, 1860 Smithtown Ave., Ronkonkoma, NY 11779
Karlheinz Strobl
Affiliation:
CVD Equipment Corporation, 1860 Smithtown Ave., Ronkonkoma, NY 11779
Get access

Abstract

Zinc oxide is a wide band gap material with excellent semiconducting, photonic and piezoelectric properties. In the past ten years zinc oxide nano-structures such as nanowires and nanorods have received great interest due to their unique dimensional and material properties in the area of photonics, electronics, mechanics, energy recovery, etc. In this paper we report the manufacturing process of a new shape, i.e. hollow hexagonal ZnO nano-cones. We grew them on different kinds of substrate using a low pressure, catalyst free, metal organic chemical vapor deposition (MOCVD) process on a FirstNano EasyTube 3000™ MOCVD system. Nitrogen was used as carrier gas to bring the reactants, DEZ and H2O, to the substrate surface. At the right balance of process temperature and carrier/precursor gas flow rate the ZnO nano-structure transitioned into a hollow hexagonal cones growth mode. The both one and two dimensional aspects of these catalyst free hollow hexagonal ZnO nano-cones, which are novel to the best of our knowledge, could lead to new applications in photonics, near field probing, chemical sensors, quantum confinement, electronic, etc.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]. Norton, D.P., Heo, Y.W., Ivil, M.P..etc, Mater. Today. 7 (6), 34 (2004).Google Scholar
[2]. Ji, S. and Ye, C.H., J. Mater. Sci. Technol. 24 (4) 457472 (2008).Google Scholar
[3]. Gao, T. and Wang, T.H., Appl. Phys. A. 80, 1451 (2005).Google Scholar
[4]. Bie, L.J., Yan, X.N., Yin, J.. etc, Sensor. Actuat. B-Chem. 126, 604 (2007).Google Scholar
[5]. Ye, C. H., Bando, Y., Shen, G.Z..etc, J. Phys. Chem. B. 110, 15146 (2006).Google Scholar
[6]. Behnajady, M. A., Modirshahla, N. and Hamzavi, R., J. Hazard. Mater. 133, 226 (2006).Google Scholar
[7]. Banerjee, D., Jo, S.H. and Ren, Z.F., Adv. Mater. 16, 2028 (2004).Google Scholar
[8]. Ghosh, R., Fujihara, S. and Basak, D., J. Electron. Mater., 35, 1728 (2006).Google Scholar
[9]. Keem, K., Kang, J., Jeong, D.Y..etc, Jpn. J. Appl. Phys., 46, 4355 (2007).Google Scholar
[10]. Wang, X.D., Song, J.H. and Wang, Z.L., Chem. Phys. Lett., 424, 86 (2006).Google Scholar
[11]. Jung, S.H., Oh, E., Lee, K.H., Park, W., Adv. Mater., 19, 749 (2007).Google Scholar
[12]. Park, W.I., Kim, D.H., Jung, S.W., Yi, G., Appl. Phys. Lett. 80, 4232 (2002).Google Scholar
[13]. Park, K., Lee, J.M., Sungg, M..etc, Jpn. J. Appl. Phys., Part I 41, 7317 (2002).Google Scholar
[14]. Vayssieres, L., Adv. Matter. 15, 464 (2003).Google Scholar
[15]. Duan, X., Lieber, C.M., Adv. Mater. 12, 298 (2000).Google Scholar
[16]. Braun, S., Grimmeiss, H.G.. J.Appl. Phys. 45, 2658 (1974).Google Scholar
[17]. Zhang, W., Salagaj, T. and Wei, J..etc. MRS Proceedings, 1201-H05-46.Google Scholar
[18]. Zhang, W., Salagaj, T. and Jensen, C..etc. MRS proceedings, 1201-BB09-58.Google Scholar
[19]. Bakkers, E. A. M. and Verheijen, M., J. Am. Chem. Soc. 125, 3440 (2003).Google Scholar
[20]. Snoeck, J. W., Froment, G. F., Fowles, J., J. Catal. 169, 240 (1997).Google Scholar