Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:33:26.965Z Has data issue: false hasContentIssue false

Histological and Mechanical Evaluation of the in vivo Bone-bonding Ability on the K2TinO2n+1/β-Ti Alloy as a Novel Bioactive Material

Published online by Cambridge University Press:  31 January 2011

Chunxiang Cui
Affiliation:
[email protected], Hebei University of Technology, School of Materials Science & Engineering, Dingzigu, Road No. 1, Hongqiao District, Tianjin 300130, China, Tianjin, Tianjin, 300130, China, 86-22-60204125, 86-22-26564125
Y. M. Qi
Affiliation:
[email protected], Hebei University of Technology, School of Materials Science & Engineering, Tianjin, China
M. F. Zhang
Affiliation:
[email protected], Tianjin Medical University, Department of Pathology, Tianjin, China
J. G. Li
Affiliation:
[email protected], Tianjin Hospital, Department of Spine Surgery, Tianjin, China
S. J. Liu
Affiliation:
[email protected], Hebei University of Technology, School of Materials Science & Engineering, Tianjin, China
X. L. Xue
Affiliation:
[email protected], Hebei University of Technology, School of Materials Science & Engineering, Tianjin, China
N. Huang
Affiliation:
[email protected], Hebei University of Technology, School of Materials Science & Engineering, Tianjin, China
Get access

Abstract

The purpose of this study was to histologically and mechanically appraise the in vivo bone-bonding abilities of K2TinO2n+1 coated and uncoated Ti-15Mo-3Nb (TMN) implants. According to GB/T16886.6-1997 biological evaluation of medical devices Part 6:Tests for local effects after implantation, the two types of implants were implanted into the proximal metaphyses of Chinese white rabbits’ femurs for 12, 26 and 52 weeks and investigated by pushing out test, scanning electron microscopy (SEM) attached to an energy-dispersive X-ray micro-analyzer (EDX) and light microscopy. The bone-bonding abilities of the K2TinO2n+1 biocoating /Ti-15Mo-3Nb (KBT) gradient biomaterial implants were higher than those of T implants at different periods of implantation. The K2TinO2n+1 biocoating (KB) could stimulate new bone rapid formation at the early stages of implantation. And the implants with the biocoating eventually bonded to bone directly, with no intervening soft tissue layer, that was an osseocoalescence. However, the type of bone-bonding between TMN titanium alloy implants and bone was a simple osseocoaptation. The more excellent bone-bonding ability of the KBT implants should be attributed to the superficial characteristics, the bioactivity of low potassium titanate and biostability of high potassium titanate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wang, Kathy, Materials Science and Engineering A 213, 134137 (1996)10.1016/0921-5093(96)10243-4Google Scholar
2 Niinomi, Mitsuo, Kuroda, Daisuke, Fukunaga, Kei-ichi, Morinaga, Masahiko, Kato, Yoshihisa, Yashiro, Toshiake and Suzuki, Akihiro, Materials Science & Engineering A. 263, 193199 (1999)10.1016/S0921-5093(98)01167-8Google Scholar
3 , Ungersböck, Perren, S. M., Pohler, O., J. Mater. Sci. 5, 788792 (1994)Google Scholar
4 Long, Marc, Rack, H.J.. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials, 19, 16211639 (1998)10.1016/S0142-9612(97)00146-4Google Scholar
5 Williams, D.F., J. Bone Joint Surg. 76B, 348349 (1994)10.1302/0301-620X.76B3.8175831Google Scholar
6 Niinomi, Mitsuo, Science and Technology of Advanced Materials, 4, 445454 (2003).10.1016/j.stam.2003.09.002Google Scholar
7 Hench, L.L., J. Am. Ceram. Soc. 74, 14871510 (1991)10.1111/j.1151-2916.1991.tb07132.xGoogle Scholar
8 , Ravaglioli, Krajewski, A. and de Portu G.. Problems involved in assessing mechanical behaviour of bioceramics. In Bioceramics, Proceedings of 1st International Bioceramic Symposium, Vol. 1, ed. Oonishi, H., Aoki, H. and Sawai, K.. Ishiyaku EuroAmerica, Kyoto, Japan 1989; 1318.Google Scholar
9 Kokubo, T., Biomaterials, 12, 155163 (1991)10.1016/0142-9612(91)90194-FGoogle Scholar
10 Hench, L. L., Journal of Biomedical Materials Research, 41, 511518 (1998)10.1002/(SICI)1097-4636(19980915)41:4<511::AID-JBM1>3.0.CO;2-F3.0.CO;2-F>Google Scholar
11 Cook, S. D., Thomas, K. A., Dalton, J. E., Journal of Biomedical Materials Research, 26, 9891001 (1992)10.1002/jbm.820260803Google Scholar
12 Lee, T. M., Yang, C. Y., Chang, E., et al. Journal of Biomedical Materials Research Part A, 71A, 652660 (2004)10.1002/jbm.a.30190Google Scholar
13 Grook, K. de, Geesink, R.G, Klein, CP, Serekian, P., Journal of Biomedical Materials Research, 21, 13751387 (1987)Google Scholar
14 Soballe, K., Hansen, ES, Brockstedt-Rasmussen, H., Buenger, C., J Bone Joint Surg. 75B, 270278 (1993)10.1302/0301-620X.75B2.8444949Google Scholar
15 Soballe, K, Hanse, ES, Rockstedt-Rasmussen, H, Hjortdal, VE, Juhl, GI, Pedersen, CM, Hvid, I, Buenger, C, Clin Orthop, 272, 300307 (1991)Google Scholar
16 Wang, B.C., Chang, E., Yang, C. Y., Tu, D., J. Mater. Sci.: Materials in Medicine, 43, 394403(1993)Google Scholar
17 Hayashi, K, Inadome, T, Mashima, T, Sugioka, Y. Journal of Biomedical Materials Research, 27, 557–63(1993)10.1002/jbm.820270502Google Scholar
18 Geesink, R.G., Hoefnagels, NH. J Bone Jt Surg. (Br), 77-B, 534547(1995).10.1302/0301-620X.77B4.7615595Google Scholar
19 Dhert, WJA, Klein, CPAT, Wolke, JGC. Journal of Biomedical Materials Research, 25, 11831200(1991)10.1002/jbm.820251002Google Scholar
20 Overgaard, S., Soballe, K, Hansen, ES, Josephsen, K, Bunger, C. J Bone Jt Surg (Br), 77-B(Suppl 3), 285(1995)Google Scholar
21 Kaneko, S., Tsuru, K., Hayakawa, S., Takemoto, S., Ohtsuki, C., Ozaki, T., Inoue, H., Biomaterials, A., 22, 875881(2001)Google Scholar
22 Cui, Chunxiang, Shen, Yutian, Xu, Yanji, Wang, Xin, Wang, Chao. Rare Metal Materials and Engineering, 32, 627630(2003)Google Scholar
23 Xu, Yanji, Cui, Chunxiang, Shen, Yutian, He, Yun, Wang, Ru, Wang, Xin, Orthopaedil Biomechanics Materials and Clinical Study, 21, 765767(2002)Google Scholar
24 Qi, Yumin, He, Yun, Cui, Chunxiang, Liu, Shuangjin, Wang, Huifen. Journal of Functional Materials, 37, 16381642(2006)Google Scholar
25 Zheng, Qixin, Guo, Xiaodong, Du, Jingyuan, et al. Chinese Journal of Biomedical Engineering, 19, 217222(2000)Google Scholar
26 Bránemark, P. I., Geoge, AZ, Tomas, A, et al. Tissue-integrated prostheses. Chicago: Quitessence Publishing Co, 1985.199225.Google Scholar
27 Dubruille, J. H., Naour, G. Le., International Journal of Oral & Maxillofacial Implants, 14, 271277(1999)Google Scholar
28 Cheng, Lingzhong, Zhong, Cuiping, Cai, Wenqin. Contemporary Histology. Shanghai Scientific and Technological Literature Publishing House, 2003, pp.248.Google Scholar