Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T22:34:03.856Z Has data issue: false hasContentIssue false

Hillock formation and thermal stresses in thin Au films on Si substrates

Published online by Cambridge University Press:  01 February 2011

Linda Sauter
Affiliation:
Max Planck Institute for Metals Research and Institut für Metallkunde, University of Stuttgart, 70569 Stuttgart, Germany
T. John Balk
Affiliation:
Now at: University of Kentucky, Department of Chemical and Materials Engineering, Lexington, KY 40506, USA
Gerhard Dehm
Affiliation:
Now at: Erich Schmid Institut für Materialwissenschaft, Österreichische Akademie der Wissenschaften, and Department für Materialphysik, Montanuniversität Leoben, 8700 Leoben, Austria
Julie A. Nucci
Affiliation:
Max Planck Institute for Metals Research and Institut für Metallkunde, University of Stuttgart, 70569 Stuttgart, Germany
Eduard Arzt
Affiliation:
Max Planck Institute for Metals Research and Institut für Metallkunde, University of Stuttgart, 70569 Stuttgart, Germany
Get access

Abstract

The wafer curvature technique was used to analyze stresses in fine-grained, 50 nm to 2 μm thick Au films on silicon substrates between room temperature and 500°C. The microstructural evolution was analyzed by scanning electron microscopy (SEM), focused ion beam (FIB) microscopy and transmission electron microscopy (TEM). In situ heating experiments inside a scanning electron microscope provided a comparison between the morphological development and the stress-temperature behavior of the film. Hillock formation was observed, but it can only partially account for the stress relaxation measured by the wafer curvature technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hieber, H., Thin Solid Films 37 (3), 335 (1976).Google Scholar
2. Kim, J. Y. and Hummel, R. E., Physica Status Solidi A 122 (1), 255 (1990).Google Scholar
3. Miller, D. C., Herrmann, C. F., Maier, H. J., George, S. M., Stoldt, C. R., and Gall, K., Scripta Materialia 52, 873 (2005).Google Scholar
4. Pennebaker, W. B., Journal of Applied Physics 40 (1), 394 (1969).Google Scholar
5. Zhang, Yanhang, Dunn, M. L., Gall, K., Elam, J. W., and George, S. M., Journal of Applied Physics 95 (12), 8216 (2004).Google Scholar
6. Nix, W. D., Metall. Trans. A 20A, 2217–45 (1989).Google Scholar
7. Kim, K., Heiland, B., Nix, W. D., Arzt, E., M.Deal, D., and Plummer, J. D., Thin Solid Films 371 (1-2), 278 (2000).Google Scholar
8. Kim, D. K., Nix, W. D., Deal, M. D., and Plummer, J. D., Journal of Materials Research 15 (8), 1709 (2000).Google Scholar