Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-15T19:30:18.209Z Has data issue: false hasContentIssue false

High-resolution Photoinduced Transient Spectroscopy of Defect Centers in Undoped Semi-Insulating 6H-SiC

Published online by Cambridge University Press:  01 February 2011

Pawel Kaminski
Affiliation:
[email protected], Institute of Electronic Materials Technology, Epitaxy Department, ul. Wólczyñska 133, Warszawa, 01-919, Poland, 48 609058857, 48 22 8349003
Roman Kozlowski
Affiliation:
[email protected], Institute of Electronic Materials Technology, ul. Wólczyñska 133, Warszawa, 01-919, Poland
Marcin Miczuga
Affiliation:
[email protected], Military University of Technology, ul. Kaliskiego 2, Warszawa, 00-908, Poland
Michal Pawlowski
Affiliation:
[email protected], Institute of Electronic Materials Technology, ul. Wólczyñska 133, Warszawa, 01-919, Poland
Michal Kozubal
Affiliation:
[email protected], Institute of Electronic Materials Technology, ul. Wólczyñska 133, Warszawa, 01-919, Poland
Jaroslaw Zelazko
Affiliation:
[email protected], Institute of Electronic Materials Technology, ul. Wólczyñska 133, Warszawa, 01-919, Poland
Get access

Abstract

High-resolution photoinduced transient spectroscopy (HRPITS) has been applied to studying defect centers controlling the charge compensation in semi-insulating (SI), vanadium-free, bulk 6H- SiC. The photocurrent relaxation waveforms were digitally recorded in the temperature range of 50 − 750 K and a new approach to extract the parameters of defect centers from the temperature-induced changes in the time constants of the waveforms has been implemented. It is based on a two-dimensional analysis using the numerical inversion of the Laplace transform. As a result, the images of spectral fringes depicting the temperature dependences of the emission rate of charge carriers for defect centers are created. Using the new procedure for the analysis of the photocurrent relaxation waveforms and the new way of the visualization of the thermal emission rate dependences, a number of shallow and deep defect levels ranging from 80 to 1900 meV have been detected. The obtained results indicate that defect structure of undoped SI bulk 6H-SiC is very complex and the material properties are affected by various point defects occupying the hexagonal and quasi-cubic lattice sites.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kamiński, P., Kozłowski, R., Kozubal, M., Żelazko, J., Miczuga, M., Pawłowski, M., Semiconductors 41, 414 (2007).Google Scholar
2. Pawłowski, M., Kamiński, P., Kozłowski, R., Jankowski, S., Wierzbowski, M., Metrology and Measurement Systems XII, 207 (2005).Google Scholar
3. Provencher, S., Comp. Phys. Comm. 27, 229 (1982).Google Scholar
4. Kamiński, P., Jankowski, S., Kozlowski, R., and Bedkowski, J., Mater. Res. Soc. Symp. Proc. 994, F0314, 2007.Google Scholar
5. Dalibor, T., Trageser, H., Pensl, G., Kimoto, T., Matsunami, H., Nizhner, D., Shigiltchoff, O., and Choyke, W.J., Mater. Sci. Eng. B61-62, 454 (1999).Google Scholar
6. Son, N. T., Henry, A., Isoya, J., Katagiri, M., Umeda, T., Gali, A., and Janzén, E., Phys. Rev.B 73, 075201–1 (2006).Google Scholar
7. Schneider, J. and Maier, K., Physica B 185, 199 (1993).Google Scholar
8. Harris, G.L. (ed.), Properties of Silicon Carbide, INSPEC-IEE, London 1995.Google Scholar
9. Smith, S.R., Evwaraye, O., Mitchel, W.C., and Capano, M.A., J. Electron. Mater. 28, 190 (1999).Google Scholar
10. Hemmingsson, C., Son, N.T., Kordina, O., Janzen, E., and Lindström, J.L., J. Appl. Phys. 84, 704 (1998).Google Scholar
11. Chen, X. D., Fung, S., Ling, C. C., Beling, C. D., and Gong, M., J. Appl. Phys. 94, 3004 (2003).Google Scholar
12. Bratus, V.Ya., Petrenko, T.T., Okulov, S.M., and Petrenko, T. L., Phys. Rev. B 71, 125202–1 (2005).Google Scholar
13. Pintilie, I., Pintilie, L., Irmscher, K., and Thomas, B., Appl. Phys. Lett. 81, 4841 (2002).Google Scholar
14. Gerstman, U., Rauls, E., Fraunheim, Th., and Overhof, H., Phys. Rev. B 67, 205202 (2003).Google Scholar
15. Evwaraye, A. O., Smith, S. R., Mitchel, W. C., and McD. Hobgood, H., Appl. Phys. Lett. 71, 1186 (1997).Google Scholar
16. Duijn-Arnold, A. v., Ikoma, T., Poluektov, O. G., Baranov, P. G., Mokhov, E. N., and Schmidt, J., Phys. Rev. B 57, 1607 (1998).Google Scholar
17. Huh, S. W., Chung, H. J., Nigam, S., Polyakov, A. Y., Li, Q., Skowronski, M., Glaser, E. R., Carlos, W. E., Shanabrook, B. V., Fanton, M. A. and Smirnov, N. B., J. Appl. Phys. 99, 013508 (2006).Google Scholar
18. Kamiński, P., Kozłowski, R., Miczuga, M., Pawłowski, M., Kozubal, M., and Pawłowski, M., J. Mater. Sci.: Mater. Electron. (2008) (in press).Google Scholar
19. Zvanut, M. E., Konovalov, V. V., Wang, H., Mitchel, W. C., Mitchell, W. D., Landis, G., J. Appl. Phys. 96, 5484 (2004).Google Scholar
20. Fang, Z.-Q., Claflin, B., Look, D. C., and Farlow, G. C., J. Electron. Mater. 36, 307 (2007).Google Scholar
21. Mitchel, W.C., Mitchell, W.D., Fang, Z.Q., Look, D.C., Smith, S. R., Smith, H. E., Khlebnikov, Igor, Khlebnikov, Y.I., Basceri, C., and Balkas, C., J. Appl. Phys. 100, 043706 (2006).Google Scholar
22. Savchenko, D.V., Kalabukhova, E.N., Lukin, S.N., Sudarshan, Tangali S., Khlebnikov, Yuri I., Mitchel, W.C., Greulich-Weber, S., Mater. Res. Soc. Symp. Proc. 911, B0507 (2006).Google Scholar
23. Korsunska, N. E., Tarasov, I., Kushnirenko, V., and Ostapenko, S.,. High-temperature photoluminescence spectroscopy in p-type SiC., Semicond. Sci. Technol. 19, 833 (2004).Google Scholar