Article contents
High-resolution Photoinduced Transient Spectroscopy of Defect Centers in Undoped Semi-Insulating 6H-SiC
Published online by Cambridge University Press: 01 February 2011
Abstract
High-resolution photoinduced transient spectroscopy (HRPITS) has been applied to studying defect centers controlling the charge compensation in semi-insulating (SI), vanadium-free, bulk 6H- SiC. The photocurrent relaxation waveforms were digitally recorded in the temperature range of 50 − 750 K and a new approach to extract the parameters of defect centers from the temperature-induced changes in the time constants of the waveforms has been implemented. It is based on a two-dimensional analysis using the numerical inversion of the Laplace transform. As a result, the images of spectral fringes depicting the temperature dependences of the emission rate of charge carriers for defect centers are created. Using the new procedure for the analysis of the photocurrent relaxation waveforms and the new way of the visualization of the thermal emission rate dependences, a number of shallow and deep defect levels ranging from 80 to 1900 meV have been detected. The obtained results indicate that defect structure of undoped SI bulk 6H-SiC is very complex and the material properties are affected by various point defects occupying the hexagonal and quasi-cubic lattice sites.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2008
References
REFERENCES
- 1
- Cited by