Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T05:25:43.971Z Has data issue: false hasContentIssue false

High-Resolution Electron Microscopy Observations of Grain-Boundary Films in Silicon Nitride Ceramics

Published online by Cambridge University Press:  25 February 2011

H.-J. Kleebe
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, D-7000 Stuttgart 1, Germany
M. K. Cinibulk
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, D-7000 Stuttgart 1, Germany
I. Tanaka
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, D-7000 Stuttgart 1, Germany
J. Bruley
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, D-7000 Stuttgart 1, Germany
R. M. Cannon
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, D-7000 Stuttgart 1, Germany
D. R. Clarke
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, D-7000 Stuttgart 1, Germany
M. J. Hoffmann
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, D-7000 Stuttgart 1, Germany
M. Rühle
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, D-7000 Stuttgart 1, Germany
Get access

Abstract

Characterization of silicon nitride ceramics by transmission electron microscopy (TEM) provides structural and compositional information on intergranular phases necessary to elucidate the factors that can influence the presence and thickness of grain-boundary films. Different TEM techniques can be used for the detection and determination of intergranular-film thickness, however, the most accurate results are obtained by high-resolution electron microscopy (HREM). HREM studies were applied, in conjunction with analytical electron microscopy, to investigate the correlation between intergranular-phase composition and film thickness. Statistical analyses of a number of grain-boundary films provided experimental verification of a theoretical equilibrium film thickness. Model experiments on a high-purity Si3N4 material, doped with low amounts of Ca, suggest the presence of two repulsive forces, a steric force and a force produced by an electrical double layer, that may act to balance the attractive van der Waals force necessary to establish an equilibrium film thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bonnell, D.A., Tien, T.-Y., and Rühle, M., J. Am. Ceram. Soc. 70 [7] 460 (1987).Google Scholar
2. Falk, L.K.L. and Dunlop, G.L., J. Mater. Sci. 22 4369 (1987).Google Scholar
3. Cinibulk, M.K., Thomas, G., and Johnson, S.M., J. Am. Ceram. Soc. 73 [6] 1606 (1990).Google Scholar
4. Cinibulk, M.K., Thomas, G., and Johnson, S.M., J. Am. Ceram. Soc. 75 [8] 2037 (1992).Google Scholar
5. Vetrano, J.S., Kleebe, H.-J., Hampp, E., Hoffmann, M.J., Cannon, R.M., and Rühle, M., J. Mater. Sci., submitted.Google Scholar
6. Kleebe, H.-J., J. Eur. Ceram. Soc. 10 151 (1992).Google Scholar
7. Lange, F.F., J. Am. Ceram. Soc. 65 [2] C23 (1982).Google Scholar
8. Clarke, D.R., J. Am. Ceram. Soc. 70 [1] 15 (1987).Google Scholar
9. Marion, J.E., Hsueh, C.H., and Evans, A.G., J. Am. Ceram. Soc. 70 [10] 708 (1987).Google Scholar
10. Clarke, D.R., Shaw, T.M., Philipse, A.P., and Horn, R.G., J. Am. Ceram. Soc., in press.Google Scholar
11. Clarke, D.R., Ultramicroscopy 4 33 (1979).Google Scholar
12. Cinibulk, M.K., Kleebe, H.-J., and Rühle, M., J. Am. Ceram. Soc., in press.Google Scholar
13. Ness, J.N., Stobbs, W.M., and Page, T.F., Philos. Mag. A 54 [5] 679 (1986).Google Scholar
14. Kleebe, H.-J., Cinibulk, M.K., Cannon, R.M., and Rühle, M., J. Am. Ceram. Soc., submitted.Google Scholar
15. Kleebe, H.-J. and Rühle, M., Mat. Res. Soc. Symp. Proc. 238 859 (1992).Google Scholar
16. Kleebe, H.-J., Hoffmann, M.J., and Rühle, M., Z. Metallkd. 83 [8] 610 (1992).Google Scholar
17. Kleebe, H.-J. and Cinibulk, M.K., J. Mater. Sci. Lett. 12 70 (1993).Google Scholar
18. Cinibulk, M.K. and Kleebe, H.-J., J. Mater. Sci., submitted.Google Scholar
19. Kleebe, H.-J., Bruley, J., and Rühle, M., J. Mater. Res., submittedGoogle Scholar
20. Clarke, D.R. and Lange, F.F., J. Am. Ceram. Soc., 63 [9-10] 586 (1980).Google Scholar
21. Tanaka, I., Pezzotti, G., Okamoto, T., Miyamoto, Y., and Koizumi, M., J. Am. Ceram. Soc. 72 [91] 1656 (1989).Google Scholar
22. Tanaka, I., Igashira, K., T, Okamoto, Niihara, K., and Cannon, R.M., J. Am. Ceram. Soc., submitted.Google Scholar
23. Tanaka, I., Kleebe, H.-J., Cinibulk, M.K., Bruley, J., and Riuhle, M., Philos. Mag. A, submitted.Google Scholar
24. Tanaka, I., Kleebe, H.-J., Cinibulk, M.K., Bruley, J., Clarke, D.R., and Riihle, M., J. Am. Ceram. Soc., submitted.Google Scholar