Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T18:35:03.406Z Has data issue: false hasContentIssue false

High-Rate Rpecvd of a-Si:H Films by Means of a VHF Resonant Plasma Source

Published online by Cambridge University Press:  10 February 2011

T. Blum
Affiliation:
Dresden University of Technology, LHM, 01062 Dresden, Germany
G. Suchaneck
Affiliation:
Dresden University of Technology, LHM, 01062 Dresden, Germany
J. Kuske
Affiliation:
Dresden University of Technology, LHM, 01062 Dresden, Germany
U. Stephan
Affiliation:
Dresden University of Technology, LHM, 01062 Dresden, Germany
W. Beyer
Affiliation:
Forschungszentpjm Jülich GmbH, ISI-PV, 52428 Jülich, Germany
A. Kottwitz
Affiliation:
Dresden University of Technology, LHM, 01062 Dresden, Germany
Get access

Abstract

High deposition rate (up to 5 nm/s) a-Si:H films suitable for recrystallization were deposited using a λ/4 helical resonator source. Refractive index, Tauc-gap, photo- and dark conductivities were measured for film characterization. The metastable behaviour was characterized by the light- induced degradation of the photoconductivity. Hydrogen content and bonding configuration were analyzed by IR absorption and mass separated thermal effusion transients, film microstructure was studied by intentionally incorporating carbon and oxygen. Most of the hydrogen is located on internal surfaces in the otherwise dense material. Differences between the deposition from our highly excited plasma and the conventional remote PECVD process are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Eaglesham, D. J., J. Appl. Phys. 77 (1995) 3597 Google Scholar
[2] Stephan, U., Kuske, J., Schade, K., MRS Symp. Proc. 336, Amorphous Silicon Technology, p.79, San Francisco, 1994 Google Scholar
[3] Laudahn, H. 1994 (unpublished)Google Scholar
[4] Suchaneck, G., Albert, M., Beyer, W., Stötzel, H. and Schade, K., J. Non-Cryst. Solids 137&138 (1991) 701 Google Scholar
[5] Suchaneck, G., Steinke, O., Alhallani, B. and Schade, K., J. Non-Cryst. Solids 187 (1995)Google Scholar
[6] Langford, A. A., Fleet, M. L., Nelson, B. P., Lanford, W. A., Maley, N., Phys. Rev. B, Vol.45 (23), 1992 Google Scholar
[7] Beyer, W., Herion, J., Wagner, H. and Zastrow, U., Philos. Mag. B 63 (1991) 269 Google Scholar
[8] Bennoit-Cattin, P. and Bernhard, L., J. Appl. Phys. 39 (1968) 5732 Google Scholar
[9] Wild, C. and Koidl, P., J. Appl. Phys. 69 (1991) 2909 Google Scholar
[10] Hoekstra, R. J. and Kushner, M. J., J. Appl. Phys. 79 (1995) 2275 Google Scholar
[11] Mahan, A. H., Carapella, J., Nelson, B. P., Crandall, R. S. and Balberg, I., J. Appl. Phys. 69(1991)6728 Google Scholar
[12] Lucovsky, G., Parsons, G. N., Wang, C., Davidson, B. N. and Tsu, D. V., Solar Cells 27 (1989) 121 Google Scholar
[13] Ouwens, J. D. and Schropp, R. E. I., Amorphous Silicon Technology-1995/MRS Symp. Proc. Vol.377 (1995) 419 Google Scholar
[14] Grill, A. and Patel, V., Appl. Phys. Lett. 60 (1992) 2089 Google Scholar
[15] Jacob, W. and Unger, M., Appl. Phys. Lett. 68 (1996) 475 Google Scholar
[16] Beyer, W. and Wagner, H., J. Non-Cryst. Solids 59–60 (1983) 161 Google Scholar
[17] Stutzmann, M., Jackson, W. B. and Tsai, C. C., Phys. Rev. B32 (1985) 23 Google Scholar
[18] Nomura, H., Kono, A. and Goto, T., Jpn. J. Appl, Phys., vol.33 (1994) 4165 Google Scholar
[19] Kono, A., Koike, N., Nomura, H. and Goto, T., Jpn. J. Appl. Phys., vol.34 (1995) 307 Google Scholar