Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:47:12.108Z Has data issue: false hasContentIssue false

High-rate deposition of a-SiNx:H films for photovoltaic applications

Published online by Cambridge University Press:  17 March 2011

W.M.M. Kessels
Affiliation:
Dept. op Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
F.J.H. van Assche
Affiliation:
Dept. op Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
J. Hong
Affiliation:
Dept. op Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
J.D. Moschner
Affiliation:
Institut für Solarenergieforschung Hameln-Emmerthal (ISFH), Am Ohrberg 1, D-31860, Emmerthal, Germany
T. Lauinger
Affiliation:
Institut für Solarenergieforschung Hameln-Emmerthal (ISFH), Am Ohrberg 1, D-31860, Emmerthal, Germany
D.C. Schram
Affiliation:
Dept. op Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
M.C.M. van de Sanden
Affiliation:
Dept. op Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Get access

Abstract

The feasibility of the new ‘Expanding Thermal Plasma’ technique for the deposition of a-SiNx:H at high deposition rates (typically ∼20Å/s) has been investigated. The structural film properties of the a-SiNx:H are reported for various process conditions and the application of the material as antireflection coating on (multi)crystalline silicon solar cells is studied. Furthermore, the performance of the material for surface and bulk passivation is investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Aberle, A.G., Lauinger, T., and Hezel, R., in Proceedings of the 14th European Photovoltaic Solar Energy Conference, Barcelona, 684 (1997).Google Scholar
[2] Grill, A., Cold Plasma in Materials Fabrication (IEEE Press, New York, 1994).Google Scholar
[3] Kessels, W.M.M., Severens, R.J., Smets, A.H.M., Korevaar, B.A., Adriaenssens, G.J., Schram, D.C., and Sanden, M.C.M. van de,J. Appl. Phys. 89, 2404 (2001).Google Scholar
[4] Kroesen, G.M.W., Schram, D.C., and Haas, J.C.M. de, Plasma Chem. Plasma Proc. 10, 531 (1990).Google Scholar
[5] Kessels, W.M.M., Boogaarts, M.G.H., Hoefnagels, J.P.M., Schram, D.C., and Sanden, M.C.M. van de, J. Vac. Sci. Technol. A 19, 1027 (2001); W.M.M. Kessels, A.H.M. Smets, J.P.M. Hoefnagels, M.G.H. Boogaarts, D.C. Schram, and M.C.M. van de Sanden, Mater. Res. Soc. Symp. Proc. 609, A4.2.1 (2000).10.1116/1.1365131Google Scholar
[6] Kushner, M.J., J. Appl. Phys. 71, 4173 (1992).Google Scholar
[7] Kessels, W.M.M., Assche, F.J.H. van, Schram, D.C., and Sanden, M.C.M. van de, to be published.Google Scholar
[8] Kessels, W.M.M., Sanden, M.C.M. van de, and Schram, D.C., J. Vac. Sci. Technol. A 18, 2153 (2000).Google Scholar
[9] Smith, D.L., Alimonda, A.S., and Preissig, F.J. von, J. Vac. Sci. Technol. B 8, 551 (1990).10.1116/1.585008Google Scholar
[10] Stephens, A.W., Aberle, A.G., and Green, M.A., J. Appl. Phys. 75, 1611 (1994).Google Scholar
[11] Lauinger, T., Moschner, J., Aberle, A.G., Hezel, R., J. Vac. Sci. Technol. A 16, 530 (1998).Google Scholar