Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:32:39.818Z Has data issue: false hasContentIssue false

High-Pressure Synthesis and the Magnetic Properties of Chromium Diantimonide

Published online by Cambridge University Press:  10 February 2011

H. Takizawa
Affiliation:
Department of Materials Chemistry, Tohoku University, Aoba-ku, Sendai 980–77, Japan, [email protected]
K. Uheda
Affiliation:
Department of Materials Chemistry, Tohoku University, Aoba-ku, Sendai 980–77, Japan, [email protected]
T. Endo
Affiliation:
Department of Materials Chemistry, Tohoku University, Aoba-ku, Sendai 980–77, Japan, [email protected]
M. Shimada
Affiliation:
Institute for Advanced Materials Processing, Tohoku University, Aoba-ku, Sendai 980–77, Japan
Get access

Abstract

A new high-pressure polymorph of CrSb2 was synthesized under high-pressure/ temperature conditions of 7–7.7 GPa and 600–650°C. The crystal structure is body-centered tetragonal with the space group 14/mcm, which is assigned to CuAl2-type structure. The experiments under various pressure conditions revealed that the high-pressure polymorph was formed above 5.5 GPa, and the compound crystallized into the low-pressure marcasite-type structure below 5 GPa. The characteristic of the high-pressure phase is the metallic bond nature including the formation of Cr-Cr-Cr linear chain along the c-axis. The compound shows metallic conductivity and itinerant-electron ferromagnetic behavior with the Curie temperature of ca. 160 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brostigen, G. and Kjekshus, A., Acta Chem. Scand., 24, 2993 (1970).Google Scholar
2. Holseth, H. and Kjekshus, A., Acta Chem. Scand., 24, 3309 (1970).Google Scholar
3. Bither, T. A., Prewitt, C. T., Gilson, J. L., Bierstedt, P. E., Flippen, R. B., and Young, H. S., Solid State Communications, 4, 533 (1966).Google Scholar
4. Donohue, P. C., Bither, T. A., and Young, H. S., Inorg. Chem., 7, 998 (1968).Google Scholar
5. Fjellvåg, H., Kjekshus, A., Chattopadhyay, T., Hochheimer, H. D., Hönle, W., and Von Schnering, H. G., Phys. Lett., 112A, 411 (1985).Google Scholar
6. Chattopadhyay, T. and Von Schnering, H. G., J. Phys. Chem. Solids, 46, 113 (1985).Google Scholar
7. Fjellvåg, H., Grosshans, W. A., Hönle, W., and Kjekshus, A., J. Magn. Magn. Mater., 145, 118 (1995).Google Scholar
8. Takizawa, H., Shimada, M., Sato, Y., and Endo, T., Mater. Lett., 18, 11 (1993).Google Scholar
9. Donaldson, J. D., Kjekshus, A., Nicholson, D. G. and Rakke, T., J. Less-Common Metals, 41, 255 (1975).Google Scholar
10. Jeitschko, W. and Donohue, P. C., Acta Crystallogr., B 29, 783 (1973).Google Scholar
11. Takizawa, H., Sato, T., Endo, T., and Shimada, M., J. Solid State Chem., 68, 234 (1987).Google Scholar
12. Izumi, F., in The Rietveld Method, edited by Young, R. A. (Oxford University Press, Oxford, 1993), chap. 13Google Scholar
13. Kjekshus, A., Peterzens, P. G., Rakke, T., and Andersen, A. F., Acta Chem. Scand., A 33, 469 (1979).Google Scholar
14. Wohlfarth, E. P., J. Magn. Magn. Mater., 7, 113 (1978).Google Scholar
15. Rhodes, P. and Wohlfarth, E. P., Proc. R. Soc. London, Ser. A, 273, 247 (1963).Google Scholar