Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T09:12:50.477Z Has data issue: false hasContentIssue false

High-Pressure Raman Scattering of Biaxially Strained GaN on GaAs

Published online by Cambridge University Press:  10 February 2011

H. Siegle
Affiliation:
Institut für Festkörperphysik, TU Berlin, Hardenbergstraβe 36, 10623 Berlin, Germany
A. R. Goñi
Affiliation:
Institut für Festkörperphysik, TU Berlin, Hardenbergstraβe 36, 10623 Berlin, Germany
C. Thomsen
Affiliation:
Institut für Festkörperphysik, TU Berlin, Hardenbergstraβe 36, 10623 Berlin, Germany
C. Ulrich
Affiliation:
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
K. Syassen
Affiliation:
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
K. Schöttker
Affiliation:
Institut für Optoelektronik, GHS Paderborn, Germany
D. J. As
Affiliation:
Institut für Optoelektronik, GHS Paderborn, Germany
D. Schikora
Affiliation:
Institut für Optoelektronik, GHS Paderborn, Germany
Get access

Abstract

We present results of high-pressure Raman-scattering experiments on bulk GaN and GaN grown on GaAs. We determined the Grüneisen parameters of both the cubic TO and LO phonon modes and the hexagonal A1, E1 and E2 modes. Our measurements reveal that the Grüneisen parameters for the GaAs substrate are about 30% smaller than those of bulk GaAs. This is a consequence of the lower compressibility of GaN compared to GaAs, which results in a pressure-induced biaxial strain on the substrate. From the pressure behavior of the GaAs modes and by comparing with our results for bulk GaN we obtained information about the biaxial strain in the GaN epitaxial layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a review, see for example: Morkoç, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., and Burns, M., J. Appl. Phys. 76, 1363 (1994):Google Scholar
Properties of Group HI Nitrides, edited by Edgar, J. H., Electronic Materials Information Service (EMIS) Datareviews Series (Institution of Electrical Engineers, London, 1994)Google Scholar
2. Mao, H. K., Xu, J., and Bell, P. M., J. Geophys. Res. 91, 4673 (1986). For temperature corrections seeGoogle Scholar
Noack, R. A. and Holzapfel, W. B., in High Pressure Science and Technology, edited by Timmerhaus, K. D. and Barber, M. S. (Plenum, New York, 1979), Vol. 1, p. 748 Google Scholar
3. Siegle, H., Eckey, L., Hoffmann, A., Thomsen, C., Meyer, B. K., Schikora, D., Hankeln, M., Lischka, K., Solid State Commun. 96, 943 (1995)Google Scholar
4. Kisielowski, C., Krüger, J., Ruvimov, S., Suski, T., Ager, J. W. III, Jones, E., Lilienthal-Weber, Z., Rubin, M., Weber, E. R., Bremser, M. D., Davis, R. F., Phys. Rev. B 54, 17745 (1996)Google Scholar
5. Savastenko, V. A. and Sheleg, A. U., Phys. Status Solidi A 48, K135 (1978)Google Scholar
6. Kim, K., Lambrecht, W. R. L., and Segali, B., Phys. Rev. B 53, 16310 (1996)Google Scholar
7. Perlin, P., Jauberthie-Carillon, C., Itie, J. P., San Miguel, A., Grzegory, I., Polain, A., Phys. Rev. B 45, 83(1992)Google Scholar
8. Wickboldt, P., Anastassakis, E., Sauer, R., and Cardona, M., Phys. Rev. B 35, 1362 (1987)Google Scholar
9. Landolt-Börnstein Tables, edited by Madelung, O., Schulz, M., and Weiss, H. (Springer, Berlin 1982), Vol. 17a Google Scholar
10. Cerdeira, F., Buchenauer, C. J., Poliak, F. H., and Cardona, M., Phys. Rev. B 5, 580 (1972)Google Scholar
11. Blakemore, J. S., J. Appl. Phys. 53, R123 (1982)Google Scholar
12. Murnaghan, F. D., Proc. Natl. Acad. Sci. USA 30, 244 (1944)Google Scholar
13. Polian, A., Grimsdich, M., and Grzegory, I., J. Appl. Phys. 79, 3343 (1996)Google Scholar
14. Kozawa, T., Kachi, T., Kano, H., Nagase, H., Koide, N., Manabe, K., J. Appl. Phys. 77, 4389(1995)Google Scholar