Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T19:31:28.362Z Has data issue: false hasContentIssue false

High-Pressure Annealing of a Prestructured Nanocrystalline Precursor to Obtain Tetragonal and Orthorhombic Polymorphs of Hf3N4

Published online by Cambridge University Press:  04 April 2014

Ashkan Salamat
Affiliation:
Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, U.S.A. European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France.
Pierre Bouvier
Affiliation:
Laboratoire des Materiaux et du Genie Physique, CNRS, Université Grenoble-Alpes, 3 Parvis Louis Neel, 38016 Grenoble, France.
Benjamin M. Gray
Affiliation:
Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
Andrew L. Hector
Affiliation:
Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
Simon A. J. Kimber
Affiliation:
European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France.
Paul F. McMillan
Affiliation:
Department of Chemistry, Christopher Ingold Laboratory, University College London, London WC1H 0AJ, U.K.
Get access

Abstract

Transition metal nitrides containing metal ions in high oxidation states are a significant goal for the discovery of new families of semiconducting materials. Most metal nitride compounds prepared at high temperature and high pressure from the elements have metallic bonding. However amorphous or nanocrystalline compounds can be prepared via metal-organic chemistry routes giving rise to precursors with a high nitrogen:metal ratio. Using X-ray diffraction in parallel with high pressure laser heating in the diamond anvil cell this work highlights the possibility of retaining the composition and structure of a metastable nanocrystalline precursor under high pressure-temperature conditions. Specifically, a nanocrystalline Hf3N4 with a tetragonal defect-fluorite structure can be crystallized under high-P,T conditions. Increasing the pressure and temperature of crystallization leads to the formation of a fully recoverable orthorhombic (defect cottunite-structured) polymorph. This approach identifies a novel class of pathways to the synthesis of new crystalline nitrogen-rich transition metal nitrides.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Salamat, A., Hector, A. L., Kroll, P. and McMillan, P. F., Coord. Chem. Rev. 257, 2063 (2013).CrossRefGoogle Scholar
Jansen, M., Guenther, E., Letschert, H. P., German Patent 199 07 618.9, 1999; Moriya, Y., Takata, T. and Domen, K., Coord. Chem. Rev. 257, 1957 (2013).Google Scholar
Baxter, D. V., Chisholm, M. H., Gama, G. J., DiStasi, V. F., Hector, A. L. and Parkin, I. P., Chem. Mater. 8, 1222 (1996); Jackson, A. W., Shebanova, O., Hector, A. L. and McMillan, P. F., J. Solid State Chem. 179, 1383(2006); Mazumder, B. and Hector, A. L., J. Mater. Chem. 19, 4673 (2009).CrossRefGoogle Scholar
Zerr, A., Miehe, G. and Riedel, R., Nature Mater. 2, 185 (2003); Dzivenko, D. A., Zerr, A., Boehler, R. and Riedel, R., Sol. St. Commun. 139, 255(2006).CrossRefGoogle Scholar
Ohtaka, O., Fukui, H., Kunisada, T., Fujisawa, T., Funakoshi, K., Utsumi, W., Irifune, T., Kuroda, K. and Kikegawa, T., J. Am. Ceram. Soc. 84, 1369 (2001).CrossRefGoogle Scholar
Li, J., Dzivenko, D., Zerr, A., Fasel, C., Zhou, Y. and Riedel, R., Z. Anorg. Allg. Chem. 631, 1449 (2005).CrossRefGoogle Scholar
Salamat, A., Hector, A. L., Gray, B. M., Kimber, S. A. J., Bouvier, P. and McMillan, P. F., J. Amer. Chem. Soc. 135, 9503 (2013).CrossRefGoogle Scholar