Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:34:09.087Z Has data issue: false hasContentIssue false

High-Performance InAs/GaAs Quantum Dots Infrared Photodetector With/Without Al0.2Ga0.8As Blocking Layers

Published online by Cambridge University Press:  21 March 2011

Zhengmao Ye
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, 10,100 Burnet Rd., Bldg. 160, Austin, TX 78758, U.S.A.
Joe C. Campbell
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, 10,100 Burnet Rd., Bldg. 160, Austin, TX 78758, U.S.A.
Zhonghui Chen
Affiliation:
Departments of Materials Science and Physics University of Southern California, Los Angeles, CA 90089-0241, U.S.A.
O. Baklenov
Affiliation:
Departments of Materials Science and Physics University of Southern California, Los Angeles, CA 90089-0241, U.S.A.
E. T. Kim
Affiliation:
Departments of Materials Science and Physics University of Southern California, Los Angeles, CA 90089-0241, U.S.A.
I. Mukhametzhanov
Affiliation:
Departments of Materials Science and Physics University of Southern California, Los Angeles, CA 90089-0241, U.S.A.
J. Tie
Affiliation:
Departments of Materials Science and Physics University of Southern California, Los Angeles, CA 90089-0241, U.S.A.
A. Madhukar
Affiliation:
Departments of Materials Science and Physics University of Southern California, Los Angeles, CA 90089-0241, U.S.A.
Get access

Abstract

InAs/AlGaAs quantum dot infrared photodetectors based on bound-to-bound intraband transitions in undoped InAs quantum dots are reported. AlGaAs blocking layers were employed to achieve low dark current. The photoresponse peaked at 6.2 μm. At 77 K and –0.7 V bias the responsivity was 14 mA/W and the detectivtiy, D*, was 1010 cmHz1/2/W.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ryzhii, V., Sci. Technol. 11, 759 (1996)Google Scholar
[2] Pan, D., Towe, E., and Kennerly, S., Appl. Phys. Lett. 75, 2719 (1999).Google Scholar
[3] Kim, S., Mohseni, H., Erdtmann, M., Michel, E., Jelen, C., and Razeghi, M., Appl. Phys. Lett. 73, 963 (1998).Google Scholar
[4] Phillips, J., Bhattacharya, Pallab, Kennerly, S.w., Beekman, D.W. and Dutta, M., IEEE J. Quant. Electron. 35, 936 (1999).Google Scholar
[5] Kim, Jong-Wook Oh, Jae-Eung, Hong, Seomg-Chul, Park, Chung-Hoon and Yoo, Tae-Kyung, IEEE Electron Device Letter, 21, No. 7, 329 (2000).Google Scholar
[6] Baklenov, O., Chen, Z.H., Kim, E.T., Mukhametzhanov, I., Madhukar, A., Ma, F., Ye, Z., Yang, B., and Campbell, J., the 58th IEEE Device Research Conference, (Denver, Colorado, June 19–21, 2000), p171; Z.H. Chen, O. Baklenov, E.T. Kim, I. Mukhametzhanov, J. Tie, A. Madhukar, Z. Ye, and J. Campbell, Proceeding of QWIP2000 Workshop, Dana Point, CA, July 2000, Infrared Physics & Technology, 42, 479 (2001)Google Scholar
[7] Chen, Z.H., Baklenov, O., Kim, E. T., Mukhametzhanov, I., Tie, J., Madhukar, A., Ye, Z. and Campbell, J. C., J. Appl. Phys. 89, 4558 (2001).Google Scholar
[8] Wang, S. Y., Lin, S. D., Wu, H. W., and Lee, C. P., Appl. Phys. Lett., 78, 1023 (2001).Google Scholar
[9] Lin, Shih-Yen, Tsai, Yau-Ren, and Lee, Si-chen, Appl. Phys. Lett., 78, 2784 (2001).Google Scholar
[10] Stiff, A.D., Krishna, S., Bhattacharya, P., and Kennerly, S., Appl. Phys. Lett. 79, 421 (2001)Google Scholar
[11] Mukhametzhanov, I., Wei, Z., Rheitz, , and Madhukar, A., Appl. Phys. Lett., 75, 85 (1999).Google Scholar
[12] Mukhametzhanov, I., Chen, Z.H., Baklenov, O., Kim, E.T., and Madhukar, A., Phys. Status Solidi (b) 224, 697 (2001)Google Scholar