Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T06:56:12.887Z Has data issue: false hasContentIssue false

High-mobility Organic Single-crystal Transistors with Amorphous Fluoropolymer Gate Insulators

Published online by Cambridge University Press:  01 February 2011

Mayumi Uno
Affiliation:
[email protected], Technology Research Institute of Osaka Pref., Izumi, Osaka, 594-1157, Japan
Yukihiro Tominari
Affiliation:
[email protected], Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
Jun Takeya
Affiliation:
[email protected], Osaka University, Graduate School of Science, 1-1, Machikaneyama, Toyonaka, 560-0043, Japan
Get access

Abstract

High-mobility rubrene single-crystal field-effect transistors are built on highly water- and oil-repellent fluoropolymer gate insulators. Roughness is intentionally introduced at the surface once to provide good adhesion to metal films and photoresist polymers for stable bottom electrodes. Before constructing interfaces with rubrene crystals, smoothness of the fluoropolymer surface is recovered by annealing at a moderate temperature to maximize mobility of the carriers induced near the interfaces. The estimated mobilities in the saturation region reproducibly exceeded 15 cm2/Vs for all the ten devices fabricated in this method and reach 30 cm2/Vs for the best two samples among them. The results demonstrate that the water-repellency and smoothness of the dielectric polymers are favorable in the excellent transistor performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Podzorov, V., Menard, E., Borissov, A., Kiryukhin, V., Rogers, J. A., and Gershenson, M. E. Phys. Rev. Lett., 93, 086602 (2004).Google Scholar
2. Podzorov, V., Menard, E., Rogers, J. A., and Gershenson, M. E., Phys. Rev. Lett., 95, 226601 (2005).Google Scholar
3. Takeya, J., Kato, J., Hara, K., Yamagishi, M., Hirahara, R., Yamada, K., Nakazawa, Y., Ikehata, S., Tsukagoshi, K., Aoyagi, Y., Takenobu, T., and Iwasa, Y., Phys. Rev. Lett., 98, 196804 (2007).Google Scholar
4. Takeya, J., Yamagishi, M., Tominari, Y., Hirahara, R., Nakazawa, Y., Nishikawa, T., Kawase, T., and Shimoda, T., Appl. Phys. Lett., 90, 102120 (2007).Google Scholar
5. Goldmann, C., Krellner, C., Pernstich, K. P., Haas, S., Gundlach, D. J., and Batlogg, B., J. Appl. Phys., 99, 034507 (2006).Google Scholar
6. Kalb, W. L., Mathis, T., Haas, S., Stassen, A. F., and Batlogg, B., Appl. Phys. Lett., 90, 092104 (2007).Google Scholar
7. Veres, J., Ogier, S. D., Leeming, S. W., and Cupertino, D. C., Adv. Mater. (Weinheim, Ger.), 13, 199 (2003).Google Scholar
8. Kloc, Ch., Simpkins, P. G., Siegrist, T., and Laudise, R. A., J. Cryst. Growth, 182, 416 (1997).Google Scholar
9. Reese, C., Chung, W.J., Ling, M.M., Roberts, M., and Bao, Z., Appl. Phys. Lett., 89, 202108 (2006).Google Scholar