Published online by Cambridge University Press: 28 February 2011
Flow modulation techniques have been used to prepare highly strained InAsxPl-x/InP quantum well structures in an atmospheric pressure organometallic vapor phase epitaxial reactor. The compositions of the pseudomorphic wells ranged from x=0.40 to 0.74, corresponding to biaxial compressive strains of 1.3-2.4%. Well thicknesses ranged from 2 to 26 monolayers. The flow modulation growth conditions were found to have a strong influence on interface formation in the wells. For wells grown under optimized modulation conditions, low-temperature photoluminescence spectra revealed peak-splitting of the emission from the thinnest wells. This splitting is attributed to emission from regions in the wells with atomically smooth interfaces over areas greater in lateral extent than the exciton diameter. The full-width at half-maximum of the peaks is in the 6-15 meV range, comparable to the best reported values for lattice- matched InGaAs(P)/InP quantum wells grown by any technique, and is independent of well thickness or composition.