Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T16:36:22.099Z Has data issue: false hasContentIssue false

Highly Strained InAsxPl-X/InP Quantum wells Prepared by Flow Modulation Epitaxy

Published online by Cambridge University Press:  28 February 2011

R. P. Schneider
Affiliation:
Department of Materials Science and Engineering and Materials Research CenterNorthwestern University, Evanston, Illinois 60208
B. W. Wessels
Affiliation:
Department of Materials Science and Engineering and Materials Research CenterNorthwestern University, Evanston, Illinois 60208
Get access

Abstract

Flow modulation techniques have been used to prepare highly strained InAsxPl-x/InP quantum well structures in an atmospheric pressure organometallic vapor phase epitaxial reactor. The compositions of the pseudomorphic wells ranged from x=0.40 to 0.74, corresponding to biaxial compressive strains of 1.3-2.4%. Well thicknesses ranged from 2 to 26 monolayers. The flow modulation growth conditions were found to have a strong influence on interface formation in the wells. For wells grown under optimized modulation conditions, low-temperature photoluminescence spectra revealed peak-splitting of the emission from the thinnest wells. This splitting is attributed to emission from regions in the wells with atomically smooth interfaces over areas greater in lateral extent than the exciton diameter. The full-width at half-maximum of the peaks is in the 6-15 meV range, comparable to the best reported values for lattice- matched InGaAs(P)/InP quantum wells grown by any technique, and is independent of well thickness or composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, T. Y., Fry, K. L., Persson, A., Reihlen, E. H. and Stringfellow, G. B., Appl. Phys. Lett. 52, 290 (1988).CrossRefGoogle Scholar
2. Thijs, P. J. A., Montie, E. A., Kesteren, H. W. van and 'tHooft, G. W., Appl. Phys. Lett. 53, 971 (1988).CrossRefGoogle Scholar
3. Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
4. Schaffer, W. J., Lind, M. D., Kowalczyk, S. P. and Grant, R. W., J. Vac. Sci. Technol. B1, 688 (1983).Google Scholar
5. Nomura, T., Maeda, Y., Miyao, M., Hagino, M. and Ishikawa, K., Jpn. J. Appl. Phys. 26, 908 (1987).CrossRefGoogle Scholar
6. Schneider, R. P. Jr, and Wessels, B. W., Appl. Phys. Lett. 54, 1142 (1989).CrossRefGoogle Scholar
7. Adams, A. R., Electron. Lett. 22, 249 (1986).CrossRefGoogle Scholar
8. Yablanovitch, E. and Kane, E. O., IEEE J. Lightwave Technol. 6, 1292 (1988).CrossRefGoogle Scholar
9. Huang, K. and Wessels, B. W., J. Appl. Phys. 60, 4342 (1986).CrossRefGoogle Scholar
10. Schneider, R. P. Jr, Li, D. X. and Wessels, B. W., J. Electrochem. Soc., to be published; Heteroepitaxial Approaches in Semiconductors, ed. Macrander, A. (Electrochemical Society, New Jersey), in press.Google Scholar
11. Fukui, T. and Kobayashi, N., J. Cryst. Growth 71, 9 (1985).Google Scholar
12. Huang, K. and Wessels, B. W., J. Cryst. Growth 92, 547 (1988).CrossRefGoogle Scholar
13. Wang, P. J. and Wessels, B. W., Appl. Phys. Lett. 44, 766 (1984).Google Scholar
14. Schneider, R. P. Jr, and Wessels, B. W., Superlattices and Microstructures, in press.Google Scholar
15. Bastard, G., Phys. Rev. B 24, 5693 (1981).CrossRefGoogle Scholar
16. Alavi, K., Pearsall, T. P., Forrest, S. R. and Cho, A. Y., Electron. Lett. 19, 226 (1983).CrossRefGoogle Scholar
17. Asai, H. and Oe, K., J. Appl. Phys. 54, 2052 (1983).Google Scholar
18. Ji, G., Huang, D., Reddy, U. K., Henderson, T. S., Houdre', R. and Morkoc, H., J. Appl. Phys. 62, 3366 (1987).Google Scholar
19. Razeghi, M. and Duchemin, J. P., J. Cryst. Growth 70, 145 (1983).CrossRefGoogle Scholar
20. Panish, M. B., Temkin, H., Hamm, R. A. and Chu, S. N. G., Appl. Phys. Lett. 49, 164 (1986).Google Scholar
21. Tsang, W. T. and Schubert, E. F., Appl. Phys. Lett. 49, 220 (1986).Google Scholar
22. Miller, B. I., Schubert, E. F., Koren, U., Ourmazd, A., Dayem, A. H. and Capik, R. J., Appl. Phys. Lett. 49, 1384 (1986).Google Scholar
23. Carey, K. W., Hull, R., Fouquet, J. E., Kellert, F. G. and Trott, G. R., Appl. Phys. Lett. 51, 910 (1987).Google Scholar
24. Madhukar, A., in Epitaxy of Semiconductor Layered Structures, edited by Tung, R. T., Dawson, L. R. and Gunshor, R. L., (Mat. Res. Soc. Symp. Proc. 102, 1988) p. 3, and references therein.Google Scholar