Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:11:55.326Z Has data issue: false hasContentIssue false

Highly Reflective and Surface Conductive Silver-Polyimide Films Fabricated Via Reduction of Silver(I) in a Thermally Curing Poly(Amic Acid) Matrix

Published online by Cambridge University Press:  10 February 2011

R. E. Southward
Affiliation:
National Research Council Postdoctoral Associate, Materials Division, NASA-Langley Research Center, Hampton, VA 23681
D S. Thompson
Affiliation:
Department of Chemistry, College of William and Mary, Williamsburg, VA 23187
D. W. Thompson
Affiliation:
Department of Chemistry, College of William and Mary, Williamsburg, VA 23187
J. L. Scott
Affiliation:
Department of Chemistry, College of William and Mary, Williamsburg, VA 23187
S. T. Broadwater
Affiliation:
Department of Chemistry, College of William and Mary, Williamsburg, VA 23187
Get access

Abstract

Highly reflective and surface conductive silvered polyimide films have been prepared by the incorporation of the (1,1,1-trifluoro-2,4-pentanedionato)silver(I) complex into a dimethylacetamide solution of the poly(amic acid) formed from 3,3',4,4'-benzophenone tetracarboxylic acid dianhydride (BTDA) and 4,4'-oxydianiline (ODA). Thermal curing of the silver(I)- containing poly(amic acid) films leads to cycloimidization with concomitant silver(I) reduction yielding a reflective and conductive silvered film surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Clusters and Colloids: Theory to Applications,” Schmid, G., Ed., NCH, Weinheim, 1994.Google Scholar
2 a) Southward, R. E., Thompson, D. W., and Clair, A. K. St., Chem. Mater., 9, 501 (1997); b) R. E. Southward, D. S. Thompson, D.W. Thompson, and A. K. St. Clair, 9, 1691 (1997).Google Scholar
3 a) Homer, G., Stoakley, D., and Clair, A. K. St., Bull. Amer. Astron. Soc., 189, 60.06(1996); b) R. Angel, B. Martin, S. Miller, D. Sandler, D. Burns, and D. Tenerelli, Bull. Amer. Astron. Soc., 189, 60.07 (1996); c) J. J. Triolo, J. B. Heaney, and G. Hass, SPIE, 21, 46 (1977).Google Scholar
4 Freeland, R. E. and Bilyou, G., 43rd Congress of the International Astronautical Federation, JAF-92-0301, Washington, D.C., 1992.Google Scholar
5 a) Gierow, P. A., Proceedings of the ASME-JSME-JSES Solar Energy Conference, Reno, NV, pp. 17 (1991); b) K. Ehricke, ARS paper 310-56, Mtg. of the Am. Rocket Soc., Cleveland, Ohio, June 18-20 (1956); c) D. A. Gulino, R. A. Egger, and W. F. Bauholzer, NASA Technical Memorandum 88865 (1986)..Google Scholar
6 Rozovskis, G., Vinkevicius, J., and Jaciauskiene, J., Adhes, J.. Sci. Technol., 10, 399 (1996).Google Scholar
7 Rubira, A. F., Rancourt, J. D., Caplan, M. L., Clair, A. K. St., and Taylor, L. T., Chem. Mater., 6, 2351 (1994).Google Scholar
8 a) Coggin, P.; McPhail, A. T. J. Chem. Soc., Chem. Commun., 1972, 91; b) Blakeslee, A. E.; Hoard, J. L. J. Am. Chem. Soc., 1965, 78, 3029.Google Scholar
9 DWT acknowledges and thanks the Petroleum Research Fund for partial support of this work.Google Scholar