Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T10:17:47.161Z Has data issue: false hasContentIssue false

Highly Oriented Yba2Cu3O7-X Thin Films Prepared by Unbalanced Dc Magnetron Sputtering From a Single Stoichiometric Target

Published online by Cambridge University Press:  28 February 2011

N. Savvides
Affiliation:
CSIRO Division of Applied Physics, Sydney, Australia 2070
C. Andrikidis
Affiliation:
CSIRO Division of Applied Physics, Sydney, Australia 2070
D.V. Hensley
Affiliation:
CSIRO Division of Applied Physics, Sydney, Australia 2070
R. Drivers
Affiliation:
CSIRO Division of Applied Physics, Sydney, Australia 2070
J-C Macfarlane
Affiliation:
CSIRO Division of Applied Physics, Sydney, Australia 2070
N.X. Tan
Affiliation:
School of Materials Science and Engineering,
A.J. Bourdillon
Affiliation:
School of Materials Science and Engineering,
Get access

Abstract

Highly oriented films of YBa2Cu3O7‐x have been reproducibly prepared with the correct metal stoichiometry by dc magnetron sputtering from a single target of stoichiometric composition. To circumvent the resputtering effects, the magnetron used an unbalanced magnetic field configuration to direct the plasma away from the substrate. Typical films have sharp superconducting transitions with Tc up to 93 K and △TC(90%.‐10%.)=0.5 K, metallic resistivity above the transition with ρ300/ρ100=2‐4, and Jc>1.5xl06 A cm‐2 at 4.2 K. The temperature dependence of J,. obeys the flux creep model with activation energy U(0)=75 meV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rossnagel, S.M. and Cuomo, J.J., AIP Conf.Proc. No.165, 106 (1988).Google Scholar
2 Shah, S.I. and Carcia, P.F., Appl. Phys. Lett., 51, 2146 (1987).Google Scholar
3 Shi, V., Sun, J., Liu, L., and Qi, Zh., Supercond. Sci.Technol., 1, 312 (1989).Google Scholar
4 Saito, Y., Sakabe, K., Ishihara, K., Manaka, K., and Suganomata, S., Jpn. J. Appl. Phys., 27, 1103 (1988).Google Scholar
5 Savvides, N., Thin Solid Films, 163, 13 (1988).Google Scholar
6 Magliuolo, M., Stamper, A.K., Greve, D.V., and Schlesinger, T.E., Appl. Phys. Lett., 54, 859 (1989).Google Scholar
7 Kwasnick, R.F., Luborsky, F.E., Hall, E.L., Garbauskas, M.F., and Curran, M.J., J. Mater. Res., 4, 257 (1989).Google Scholar
8 Setsune, K., Kamada, T., Adachi, H., and Vasa, K., J.Appl.Phys., 64,1318 (1988).Google Scholar
9 Li, H.C., Linker, G., Ratzel, F., Smithey, R., and Geerk, J., Appl. Phys. Lett., 52, 1098 (1988); A. Hohler, D. Guggi, H. Neeb, and C. Heiden, ibid., 54, 1066 (1989).Google Scholar
10 Savvides, N. and Window, B., J. Vac. Sci. Technol. A, 4, 504 (1986); 3, 2386 (1985); J. Appl. Phys., 64, 225 (1988).Google Scholar
11 Savvides, N., J. Appl. Phys., 62, 600 (1987).Google Scholar
12 Savvides, N., Proc. 2nd Int. Symposium on Superconductivity, Nov. 1417, 1989, Tsukuba City, Japan.Google Scholar