Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T04:20:23.688Z Has data issue: false hasContentIssue false

Highly Efficient Dye-sensitized Solar Cells

Published online by Cambridge University Press:  20 July 2011

Liyuan Han
Affiliation:
Photovoltaic Materials Unit, National Institute for Materials Science, 1-2-1 Sengen Tsukuba, Ibaraki, 305-0047, Japan
Ashraful Islam
Affiliation:
Photovoltaic Materials Unit, National Institute for Materials Science, 1-2-1 Sengen Tsukuba, Ibaraki, 305-0047, Japan
Get access

Abstract

The present paper discusses the principle of dye-sensitized solar cells (DSCs) in terms of equivalent circuit model and the key issues to improve the device efficiency. Equivalent circuit model is proposed following analysis by electrochemical impedance spectroscopy of the voltage dependence of the internal resistance elements of DSCs. The influence of these elements upon cell performance in areas such as short circuit current density (Jsc), open circuit voltage (Voc), and fill factor (FF) was examined based on the equivalent circuit. Efficient sensitization of nanocrystalline TiO2 film was observed across the whole visible range and into the near-IR region as far as 1000 nm with a new panchromatic substituted β-diketonato Ru(II)-terpyridine dye (HIG1). Introduction of bulky alkyl substituent group in a β-diketonato Ru(II)-terpyridine dye (A3) suppress aggregate formation result in an improved performance of DSCs and the performance is independent of the additive added during the dye adsorption process. The haze factor of TiO2 electrodes is a useful index when fabricating light-confined TiO2 electrodes to improve Jsc. It was demonstrated that blocking of bare TiO2 surface with small molecules is an effective way of suppress interfacial charge recombination at the TiO2-dye/electrolyte interface and of improving shunt resistance and Voc. FF was also improved by reduction of the internal series resistance, which is composed of the following three elements: the redox reaction resistance at the platinum counter electrode, the resistance of carrier transport by ions in the electrolyte, and resistance due to the sheet resistance of the transparent conducting oxide. Finally, the highest efficiency scores of 10.4% and 11.1% (aperture illumination area 1.004cm2 and 0.219cm2, respectively) were confirmed by a public test center.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] O’Regan, B., and Grätzel, M., Nature 353, 737740 (1991).Google Scholar
[2] Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Müller, E., Liska, P., Valchopoulos, N. and Grätzel, M., J. Am. Chem. Soc. 115, 63826390 (1993).Google Scholar
[3] Nazeeruddin, M. K., Pechy, P., Renouard, T., Zakeeruddin, S. M., Humphry, B., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G. B., Bignozzi, C. A., and Grätzel, M., J. Am. Chem. Soc. 123, 16131624 (2001).Google Scholar
[4] Han, L., Koide, N., Chiba, Y., and Mitate, T., Appl. Phys. Lett., 84, 24332435 (2004).Google Scholar
[5] Durrant, J.R., Haque, S. A., and Palomares, E., Coord. Chem. Rev. 248, 12471257 (2004).Google Scholar
[6] Tachibana, Y., Hara, H., Sayama, K., and Arakawa, H., Chem. Mater. 14, 25272535 (2002).Google Scholar
[7] Katoh, R., Furube, A., Yoshihara, T., Hara, K., Fujihashi, G., Takano, S., Murata, S., Arakawa, H., and Tachiya, M., J. Phys. Chem. B 108, 48184822 (2004).Google Scholar
[8] Hara, K., Kurashige, M., Ito, S., Kasasa, C., Shinpo, A., Suga, S., Sayama, K., and Arakawa, H., Chem. Commun. 9, 252253 (2003).Google Scholar
[9] Hara, K., Wang, Z-S., Sato, T, Furube, A., Katoh, R., Sugihara, H., Dan-oh, Y., Kasada, C., Shinpo, A., and Suga, S., J. Phys. Chem. B 109, 1547615482 (2005).Google Scholar
[10] Horiuchi, T., Miura, H., Sumioka, K., and Uchida, S., J. Am. Chem. Soc. 126, 1221812219 (2004).Google Scholar
[11] Islam, A., Sugihara, H., Hara, K., Singh, L.P., Katoh, R., Yanagida, M., Takahashi, Y., Murata, S., and Arakawa, H., J. Photochem. Photobiol. A 145, 135141 (2001).Google Scholar
[12] Nazeeruddin, Md. K., Zakeeruddin, S. M., Lagref, J. –J., Liska, P., Comte, P., Barolo, C., Viscardi, G., Schenk, K., and Grätzel, M., Coord. Chem. Rev. 248, 13171328 (2004).Google Scholar
[13] Islam, A., Sugihara, H., Hara, K., Singh, L.P., Katoh, R., Yanagida, M., Takahashi, Y., Murata, S., Arakawa, H., and Fujihashi, G., Inorg. Chem. 40, 53715380 (2001).Google Scholar
[14] Ferrere, S., Chem. Mater. 12, 10831089 (2000).Google Scholar
[15] Alonso-Vante, N., Nieregarten, J., and Sauvage, J., J. Chem. Soc. Dalton Transactions, 16491654 (1994).Google Scholar
[16] Sugihara, H., Sano, S., Yamaguchi, T., Yanagida, M., Sato, T., Abe, Y., Nagao, Y., and Arakawa, H., J. Photochem. Photobiol.A 166, 8190 (2004).Google Scholar
[17] Islam, A., Sugihara, H., Yanagida, M., Hara, K., Fujihashi, G., Tachibana, Y., Katoh, R., Murata, S., and Arakawa, H., New J. Chem. 26, 966 (2002).Google Scholar
[18] Islam, A., Chowdhury, F. A., Chiba, Y., Komiya, R., Fuke, N., Ikeda, N., Nozaki, K., and Han, L., Chem. Mater. 18 5178 (2006).Google Scholar
[19] Gao, S., Islam, A., Numata, Y., Han, L., Applied Physics Express 3 062301 (2010).Google Scholar
[20] Morandeira, A., Lopez-Duarte, I., O’Regan, B., Martinez-Diazm, M. V., Forneli, A., Palomares, E., Torres, T. and Durrant, J. R., J. Mater. Chem., 19, 50165026 (2009).Google Scholar
[21] Jiang, X., Marinado, T., Gabrielsson, E., Hagberg, D. P., Sun, L., and Hagfeldt, A., J. Phys. Chem. C, 114, 27992805 (2010) and references cited there in. Google Scholar
[22] Marinado, T., Hahlin, M., Jiang, X., Quintana, M., Johansson, E. M. J., Gabrielsson, E., Plogmaker, S., Hagberg, D. P., Boschloo, G., Zakeeruddin, S. M., Grätzel, M., Siegbahn, H., Sun, L., Hagfeldt, A., and Rensmo, H., J. Phys. Chem. C, 114, 1190311910 (2010).Google Scholar
[23] Islam, A., Singh, S. P., Yanagida, M., Karim, M. R., Han, L., International Journal of Photoenergy, 2011, 7 (2011).Google Scholar
[24] Usami, A., Sol. Energy Mater. Sol. Cells, 64, 7383 (2000).Google Scholar
[25] Wang, P., Zakkeruddin, S. M., Comte, P., Charvet, R., H-Baker, R., and Grätzel, M., J. Phys. Chem. B, 107, 1433614341 (2003).Google Scholar
[26] Meier, J., Spitznagel, J., Kroll, U., Bucher, C., Fay, S., Moriarty, T., and Shah, A., Thin Solid Films, 451452, 518524 (2004).Google Scholar
[27] Zhao, Y., Miyajima, S., Ide, Y., Yamada, A., and Konagai, M., Jpn. J. Appl. Phys. 41, 64176420 (2002).Google Scholar
[28] Nasuno, Y., Kondo, M., and Matsuda, A., Jpn. J. Appl. Phys. 40, L303L305 (2001).Google Scholar
[29] Chiba, Y., Islam, A., Kakutani, K., Komiya, R., Koide, N., and Han, L., Proc. International Photovoltaic Science & Engineering Conference (PVSEC-15), 665 (2005).Google Scholar
[30] Sze, S. M., Physics of Semiconductor Devices, (1981).Google Scholar
[31] Huang, S. Y., Schlichthoerl, G., Nozik, A. J., Grätzel, M., and Frank, A. J., J. Phys. Chem. B, 101, 25762582 (1997).Google Scholar
[32] Kusama, H., and Arakawa, H., Sol. Energy Mater. Sol. Cells, 81, 8799 (2004).Google Scholar
[33] Kato, T., Fujimoto, M., Kado, T., Sakaguchi, S., Kosugi, D., Shiratuchi, R., Takashima, W., Kaneto, K., and Hayase, S.,J. Electrochem. Soc., 152, A1105A1108 (2005).Google Scholar
[34] Kusama, H., and Arakawa, H., J. Photochem. Photobiol. A, 160, 171179 (2003).Google Scholar
[35] Haque, S. A., Palomares, E., Cho, B. M., Green, A. N. M., Hirata, N., Klug, D. R., and Durrant, J.R., J. Am. Chem. Soc. 127, 34563462 (2005).Google Scholar
[36] Fukui, A., Komiya, R., Yamanaka, R., Islam, A., and Han, L., Sol. Energy Mater. Sol. Cells, 90, 649658 (2006).Google Scholar
[37] Han, L., Koide, N., Chiba, Y., Islam, A., Komiya, R., Fuke, N., Fukui, A., and Yamanaka, R., Appl. Phys. Lett., 86, 213501, 13 (2005).Google Scholar
[38] Koide, N., and Han, L., Rev. Sci. Instrum. 75, 28282831 (2004).Google Scholar
[39] Koide, N., Chiba, Y., and Han, L., Jpn. J. Appl. Phys., 44, 41764181 (2005).Google Scholar