Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:18:52.840Z Has data issue: false hasContentIssue false

Highly dispersed metal-clusters and -colloids for the preparation of active liquid-phase hydrogenation-catalysts

Published online by Cambridge University Press:  15 February 2011

Helmut Bönnemann
Affiliation:
Max-Planck-lnstitut für Kohlenforschung, Postfach 10 13 53, W-4330 Mülheim an der Ruhr, BRD
Werner Brijoux
Affiliation:
Max-Planck-lnstitut für Kohlenforschung, Postfach 10 13 53, W-4330 Mülheim an der Ruhr, BRD
Rainer Brinkmann
Affiliation:
Max-Planck-lnstitut für Kohlenforschung, Postfach 10 13 53, W-4330 Mülheim an der Ruhr, BRD
Eckard Dinjus
Affiliation:
Max-Planck-lnstitut für Kohlenforschung, Postfach 10 13 53, W-4330 Mülheim an der Ruhr, BRD
Rainer Fretzen
Affiliation:
Max-Planck-lnstitut für Kohlenforschung, Postfach 10 13 53, W-4330 Mülheim an der Ruhr, BRD
Thomas Joußen
Affiliation:
Max-Planck-lnstitut für Kohlenforschung, Postfach 10 13 53, W-4330 Mülheim an der Ruhr, BRD
Barbara Korall
Affiliation:
Max-Planck-lnstitut für Kohlenforschung, Postfach 10 13 53, W-4330 Mülheim an der Ruhr, BRD
Get access

Summary

A comparison of the activities of conventionally precipitated metals on charcoal, deposited organometallic clusters and metal colloids for liquid-phase hydrogenation has been made under standard conditions in order to assess the effect of particle size. The strong SMSI-effect known for TiO2-supports was simulated on charcoal by doping the surface with small amounts of Ti(0) and subsequent oxygenation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Bradley, J.S., Adv. Organomet. Chem. 22 (1983) 158.Google Scholar
2) Bradley, J.S., Hill, E., Leonowicz, M.E., Witzke, H.J., J. Mol. Catal. 41 (1987) 59.Google Scholar
3) Klabunde, K.J., Li, Y.-X., Tan, B.-J., Chem. Mater. 3 (1991) 30.Google Scholar
4) Klabunde, K.J., Science 224 (1984) 1329.Google Scholar
5) Klabunde, K.J., Imizu, Y., J. Am. Chem. Soc. 106 (1984) 2721.Google Scholar
6) Klabunde, K.J., Tanaka, Y., J. Mol. Catal 21 (1983) 57.CrossRefGoogle Scholar
7) Matosuo, K., Klabunde, K.J., J. Org. Chem. 47 (1982) 843.Google Scholar
8) Klabunde, K.J., Davis, S.C., Hattori, H., Tanaka, Y., J. Catal. 54 (1978) 254.Google Scholar
9) Klabunde, K.J., Efner, H.F., Murdock, T.O., Ropple, R., J. Am. Chem. Soc. 98/4 (1976) 1021.Google Scholar
10) Esumi, K., Shiratori, M., Ishizuka, H., Tano, T., Torigoe, K., Meguro, K., Langmuir 7 (1991) 457.CrossRefGoogle Scholar
11) Meguro, K., Torizuka, M., Esumi, K., Bull. Chem. Soc. Jpn. 61 (1988) 341.Google Scholar
12) Stromnova, T.A., Busygina, I.N., Vargaftik, M.N., Moiseev, L.L., Metalloorg. Khim. 3(4) (1990) 803.Google Scholar
13) Moiseev, l.l., Pure App/. Chem. 61(10) (1989) 1755.CrossRefGoogle Scholar
14) Moiseev, l.l., Mekhanizm Kataliza, Novosibirsk, (Ch 1) (1984) 72; from: Ref. Zh., Khim. 1985, Abstr. No. 4B4259.Google Scholar
15) Moiseev, l.l., Itogi Nauki i Tekhn. VINITI. Kinet. i. Kataliz 13 (1984) 21; from: Ref. Zh., Khim. 1984, Abstr. No. 16B4121.Google Scholar
16) Schmid, G., Endeavour 14(4) (1990) 172.Google Scholar
17) Schmid, G., Aspects Homogeneous Catalysis 7 (1990) 1.Google Scholar
18) Schmid, G., Smit, H.H.A., Staveren, M.P.J., Thiel, R.C., New J. Chem. 14(6–7) (1990) 559.Google Scholar
19) Schmid, G., Klein, N., Morun, B., Lehnert, A., Maim, J.O., Pure Appl. Chem. 62(6) (1990) 1175.Google Scholar
20) Jongh, L.J. De, Aguiar, J.A.O. De, Brom, H.B., Longoni, G., Ruitenbeek, J.M. Van, Schmid, G., Smit, H.H.A., Staveren, M.P.J. Van, Thiel, R.C., Z. Phys. D: At., Mol. Clusters 12(1–4) (1989) 445.Google Scholar
21) Schmid, G., Polyhedron 7(22–23) (1988) 2321.Google Scholar
22) Jongh, L.J. De, Brom, H.B., Longoni, G., Nugteren, P.R., Pronk, B.J., Schmid, G., Smit, H.H.A., Staveren, M.P.J. Van, Thiel, R.C., NATO ASl Ser., Ser. B, 158 (Phys. Chem. Small Clusters) (1987) 807.Google Scholar
23) Schmid, G., Chem. Unserer Zeit 22(3) (1988) 85.Google Scholar
24) Schmid, G., Kem. Kozl. 63(2) (1985) 199.Google Scholar
25) Schmid, G., Nachr. Chem., Tech. Lab. 35(3) (1987) 249250, 252–254.Google Scholar
26) Schmid, G., Angew. Chem. 90(6) (1978) 417.Google Scholar
27) Bönnemann, H., Brijoux, W., Brinkmann, R., Dinjus, E., Joulßen, T., Korall, B., Angew. Chem. 103 (1991) 1344; Angew. Chem. Int. Ed. EngI. 30 (1991) 1312.Google Scholar
28) Kulzick, M., Price, R.T., Muetterties, E.L., Day, V.W., Organometallics 1 (1982) 1256.CrossRefGoogle Scholar
29) Antony, M.T., Green, M.L.H., Young, D., J. Chem. Soc. Dalton Trans. (1975), 14191422.CrossRefGoogle Scholar
30) Ryndin, Y.A., Stein, M.V., Boronin, A.I., Bukhtiyarov, V.I., Zaikovskii, V.I., Appl. Catal. 54 (1989) 277.Google Scholar
31) Willstätter, R., Waldschmidt-Leitz, E., Berichte d. D. Chem. Gesellschaft 54 (1921) 113.Google Scholar
32) Hegedus, L.L. (Ed.), Catalyst Design, John Wiley and Sons Inc., New York (1987).Google Scholar
33) Stevenson, S.A. (Ed.), Metal-Support Interactions in Catalysis, Sintering and Redispersion, Van Nostrand Reinhold Company Inc., New York (1987).Google Scholar
34) Alekseev, O.S., Zaikovskii, V.I., Ryndin, Y.A., Appl. Catal. 63 (1990) 37.CrossRefGoogle Scholar
35) Ryndin, Y.A., Alekseev, O.S., Paukshtis, E.A., Kalinkin, A.V., Kochubey, D.I., Appl. Catal. 63 (1990) 51.Google Scholar
36) Ryndin, Y.A., Alekseev, O.S., Simonov, P.A., Likholobov, V.A., J. Mol. Catal. 55 (1989) 109.CrossRefGoogle Scholar