Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T12:22:21.221Z Has data issue: false hasContentIssue false

Highly and Rapidly Stabilized Protocrystalline Silicon Multilayer Solar Cells

Published online by Cambridge University Press:  01 February 2011

Koeng Su Lim
Affiliation:
Department of Electrical Engineering & Computer Science, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
Joong Hwan Kwak
Affiliation:
Department of Electrical Engineering & Computer Science, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
Seong Won Kwon
Affiliation:
Department of Electrical Engineering & Computer Science, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
Seung Yeop Myong
Affiliation:
Department of Electrical Engineering & Computer Science, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
Get access

Abstract

We have developed highly stabilized (p-i-n)-type protocrystalline silicon (pc-Si:H) multilayer solar cells. However, the source of the superior light-induced stability of the pc-Si:H multilayer absorbers compared to conventional amorphous silicon (a-Si:H) absorbers remains unclear. Photoluminescence (PL) and Fourier transform infrared (FTIR) spectroscopy measured at room temperature produce strong evidence that nano-sized silicon grains embedded in regularly arranged highly H2-diluted sublayers suppress the photocreation of dangling bonds. To achieve a high conversion efficiency, we applied a double-layer p-type amorphous siliconcarbon alloy (p-a-Si1-xCx:H) structure to the pc-Si:H multilayer solar cells. The less pronounced initial short wavelength quantum efficiency variation as a function of bias voltage, and the wide overlap of dark current - voltage (JD-V) and short-circuit current - open-circuit voltage (Jsc-Voc) characteristics prove that the double p-a-Si1-xCx:H layer structure successfully reduces recombination at the p/i interface. Thus, we achieved a highly stabilized efficiency of 9.0 % without any back reflector.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1997).10.1063/1.89674Google Scholar
2 Koh, J., Lee, Y., Fujiwara, H., Wronski, C. R. and R.Collins, W., Appl. Phys. Lett. 73, 1526 (1998).10.1063/1.122194Google Scholar
3 Yang, J., Lord, K. and Guha, S., Mater. Res. Soc. Symp. Proc. 609, A15.4 (2000).10.1557/PROC-609-A15.4Google Scholar
4 Koch, C., Ito, M., Švrček, V., Schubert, M. B. and Werner, J. H., Mater. Res. Soc. Symp. Proc. 609, A15.6 (2000).10.1557/PROC-609-A15.6Google Scholar
5 Ahn, J. Y., Jun, K. H., Konagai, M. and Lim, K. S., Appl. Phys. Lett. 82, 1718 (2003).10.1063/1.1561161Google Scholar
6 Xu, Y., Liao, X., Kong, G., Zeng, X., Hu, Z., Diao, H. and Zhang, S., Technical Digest of The 14th International Photovoltaic Science and Engineering Conference, Bangkok, Thailand, p. 105 (2004).Google Scholar
7 Kočka, J., Stuchlík, J., Stuchlíková, Ha, Švrček, V., Fojtík, P., Mates, T., Luterová, K. and Fejfar, A., Appl. Phys. Lett. 79, 2540 (2001).10.1063/1.1410364Google Scholar
8 Jun, K. H., Ouwens, J. D., Schropp, R. E. I., Lee, J. Y., Choi, J. H., Lee, H. S. and Lim, K. S., J. Appl. Phys. 88, 4881 (2000).10.1063/1.1311308Google Scholar
9 Lim, K. S., Kwon, S. W. and Myong, S. Y., Technical Digest of The 12th International Photovoltaic Science and Engineering Conference, Jeju, Korea, p. 37 (2001).Google Scholar
10 Kwon, S. W., Ahn, J. Y., Myong, S. Y. and Lim, K. S., Proceedings of the 17th European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany, p. 3015 (2001).Google Scholar
11 Myong, S. Y., Kwon, S. W., Konagai, M. and Lim, K. S., Sol. Energy Mater. Sol. Cells 85, 133 (2005).Google Scholar
12 Myong, S. Y., Lee, H. K., Yoon, E. and Lim, K. S., J. Non-Cryst. Solids 298, 131 (2002).10.1016/S0022-3093(02)00916-XGoogle Scholar
13 Lee, H. K., Myong, S. Y., Lim, K. S. and Yoon, E., J. Non-Cryst. Solids 316, 297 (2003).10.1016/S0022-3093(02)01630-7Google Scholar
14 Myong, S. Y., Kim, T. H., Kim, K. H., Ahn, B. T., S. Miyajima, Konagai, M. and Lim, K. S., Sol. Energy Mater. Sol. Cells 81, 485 (2004).10.1016/j.solmat.2003.12.002Google Scholar
15 Myong, S. Y., Shevaleevskiy, O., Miyajima, S., Konagai, M. and Lim, K. S., J. Non-Cryst. Solids 351, 89 (2005).10.1016/j.jnoncrysol.2004.09.019Google Scholar
16 Tang, S., Liu, X. and Bao, X., Appl. Phys. Lett. 66, 469 (1995).10.1063/1.114059Google Scholar
17 Ito, M., Kondo, M. and Matsuda, A., Technical Digest of The 14th International Photovoltaic Science and Engineering Conference, Bangkok, Thailand, p. 381 (2004).Google Scholar
18 Mahan, A. H., Yang, J., Guha, S. and Williamson, D. L., Phys. Rev. B 61, 1677 (2000).10.1103/PhysRevB.61.1677Google Scholar
19 Ambrosone, G., Coscia, U., Lettieri, S., Maddalena, P. and Minarini, C., Materials Science and Engineering B 101, 236 (2003).10.1016/S0921-5107(02)00670-0Google Scholar
20 Itoh, T., Yamamoto, K., Ushikoshi, K., Nonomura, S. and Nitta, S., J. Non-Cryst. Solids 266, 201 (2000).10.1016/S0022-3093(99)00821-2Google Scholar
21 Han, D., Wang, K., Owens, J. M., Gedvilas, L., Nelson, B., Habuchi, H. and Tanaka, M., J. Appl. Phys. 93, 3776 (2003).10.1063/1.1555680Google Scholar
22 Myong, S. Y., Kim, S. S. and Lim, K. S., Thin Solid Films 455, 482 (2004).10.1016/j.tsf.2004.01.018Google Scholar
23 Myong, S. Y., Kim, S. S. and Lim, K. S., Appl. Phys. Lett. 84, 5416 (2004).10.1063/1.1767601Google Scholar
24 Myong, S. Y., Kim, S. S. and Lim, K. S., J. Appl. Phys. 95, 1525 (2004).10.1063/1.1639140Google Scholar
25 Myong, S. Y. and Lim, K. S., Appl. Phys. Lett. 86, 033506 (2005).10.1063/1.1853492Google Scholar
26 Arya, R. R., Catalano, A. and Oswald, R. S., Appl. Phys. Lett. 49, 1089 (1986).10.1063/1.97430Google Scholar
27 Deng, J., Pearce, J. M., Koval, R. J., Vlahos, V., Collins, R. W. and Wronski, C. R., Appl. Phys. Lett. 82, 3023 (2003).10.1063/1.1571985Google Scholar
28 Sakai, H., Yoshida, T., Fujikake, S., Hama, T. and Ichikawa, Y., J. Appl. Phys. 67, 3494 (1990).10.1063/1.345340Google Scholar
29 Lips, K., Mater. Res. Soc. Symp. Proc. 377, 455 (1995).10.1557/PROC-377-455Google Scholar
30 Pearce, J. M., Koval, R. J., Ferlauto, A. S., Collins, R. W., Wronski, C. R., Yang, J. and Guha, S., Appl. Phys. Lett. 77, 3093 (2000).10.1063/1.1323550Google Scholar
31 Lubianiker, Y., Cohen, J. D., Jin, H. C. and Abelson, J. R., Phys. Rev. B 60, 4434 (1999).10.1103/PhysRevB.60.4434Google Scholar
32 Kamei, T., Stradins, P. and Matsuda, A., Appl. Phys. Lett. 74, 1707 (1999).10.1063/1.123662Google Scholar
33 Street, R. A., “Hydrogenated Amorphous Silicon”, ed. Cahn, R.W., Davis, E. A. and Ward, I. M. (Cambridge University Press, Cambridge, 1991).10.1017/CBO9780511525247Google Scholar
34 Shimizu, T., Jpn. J. Appl. Phys. 43, 3257 (2004).10.1143/JJAP.43.3257Google Scholar
35 Myong, S. Y. and Lim, K. S., Appl. Phys. Lett. 82, 3026 (2003)10.1063/1.1571651Google Scholar