Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T11:16:43.667Z Has data issue: false hasContentIssue false

High-k dielectrics for hybrid floating gate memory applications

Published online by Cambridge University Press:  12 June 2012

J.G. Lisoni
Affiliation:
IMEC, Kapeldreef 75, 3001 Heverlee (Leuven), Belgium
L. Breuil
Affiliation:
IMEC, Kapeldreef 75, 3001 Heverlee (Leuven), Belgium
P. Blomme
Affiliation:
IMEC, Kapeldreef 75, 3001 Heverlee (Leuven), Belgium
J. Van Houdt
Affiliation:
IMEC, Kapeldreef 75, 3001 Heverlee (Leuven), Belgium
Get access

Abstract

We report on the materials issues involved in the hybrid floating gate (HFG) device fabrication, where the interpoly dielectric is replaced by an intermetal dielectric (IMD). Indeed, in HFG the dielectric is inserted in between two metal layers in a metal\dielectric\metal stack. The materials of choice were TiN as the metal layer and Al2O3 and HfO2 (and their combination) as IMD. The program/erase performance is discussed based on the dielectric constant and crystallinity of the IMD and the metal-IMD interface characteristics.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Blomme, P., Rosmeulen, M., Cacciato, A., Kostermans, M., Vrancken, C., Van Aerde, S., Schram, T., Debusschere, I., Jurczak, M., Van Houdt, J., 2010 VLSI Techn. Symp. Proc., pp129 Google Scholar
2. Rosmeulen, M., US Patent 906,806 B2 Google Scholar
3. Blomme, P., Cacciato, A., Wellekens, D., Breuil, L., Rosmeulen, M., Kar, G. S., Locorotondo, S., Vrancken, C., Richard, O., Debusschere, I., and Van Houdt, J., IEEE Elec. Dev. Lett. 33 (2012) 333 Google Scholar
4. Westlinder, J., Schram, T., Pantisano, L., Cartier, E., Kerber, A., Lujan, G. S., Olsson, J., Groeseneken, G., IEEE Elec. Dev. Lett. 24 (2003) 550; as deposited TiN work function 5.1 eV.Google Scholar
5. Blomme, P., Van Houdt, J., “Scalability study of fully planarized hybrid floating gate Flash memory cells with high-k IPD.” International Memory Workshop (IMW) 2012, Milan-Italy. Poster presentation Nr. 17.Google Scholar
6. Wilk, G. D., Wallace, R. M., Anthony, J. M., J. Appl. Phys. 89 (2001) 5243; HfO2 k>15 (depending on crystalline phase), conduction band offset with respect to silicon=1.6 eV and band gap > 5.6 eV (depending on crystalline phase)15+(depending+on+crystalline+phase),+conduction+band+offset+with+respect+to+silicon=1.6+eV+and+band+gap+>+5.6+eV+(depending+on+crystalline+phase)>Google Scholar
7. Adelmann, C., Kesters, J., Opsomer, K., Detavernier, C., Kitt, J. A. and Van Elshocht, S., Appl. Phys. Lett. 95 (2009) 091911 Google Scholar
8. EOT= εr SiO2dIMD/kIMD; εr SiO2=3.9; dIMD and kIMD=thickness and relative dielectric constant of the IMD films. Google Scholar
9. Gusev, E.P., Cabral, C. Jr., Copel, M., D’Emic, C., Gribelyuk, M., Microelec. Eng. 69 (2003) 145 Google Scholar
10. Kita, K., Kyuno, K., Toriumi, A., Appl. Phys. Lett. 86 (2005) 102906 Google Scholar
11. K HfO2 extracted considering capacitors in series, using the nominal thicknesses for Al2O3 and HfO2 as given in Table 1 Google Scholar
12. Brossmann, U., Würschum, R., Södervall, U., Schaefer, H.-E., J. Appl. Phys. 85 (1999) 7646 Google Scholar