Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T04:03:05.233Z Has data issue: false hasContentIssue false

High-Gain, High-Speed ZnO MSM Ultraviolet Photodetectors

Published online by Cambridge University Press:  03 September 2012

H. Shen
Affiliation:
US Army Research Laboratory, Sensors and Electron Devices Directorate, AMSRL-SE-EM, Adelphi, MD 20783
M. Wraback
Affiliation:
US Army Research Laboratory, Sensors and Electron Devices Directorate, AMSRL-SE-EM, Adelphi, MD 20783
C. R. Gorla
Affiliation:
Rutgers University, Department of Electrical and Computer Engineering, Piscataway, NJ 08854
S. Liang
Affiliation:
Rutgers University, Department of Electrical and Computer Engineering, Piscataway, NJ 08854
N. Emanetoglu
Affiliation:
Rutgers University, Department of Electrical and Computer Engineering, Piscataway, NJ 08854
Y. Liu
Affiliation:
Rutgers University, Department of Electrical and Computer Engineering, Piscataway, NJ 08854
Y. Lu
Affiliation:
Rutgers University, Department of Electrical and Computer Engineering, Piscataway, NJ 08854
Get access

Abstract

High quality zinc oxide (ZnO) films were epitaxially grown on R-plane sapphire substrates by metalorganic chemical vapor deposition at temperatures in the range 350-600°C. In-situ nitrogen compensation doping was performed using NH3. The metalsemiconductor-metal ultraviolet-sensitive photodetectors were fabricated on nitrogencompensation-doped epitaxial ZnO films. The photoresponsivity of these devices exhibits a linear dependence upon bias voltage up to 10 V, with a photoresponsivity of 400 A/W at 5 V. The rise and fall times are 1 and 1.5 μs, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hu, J. and Gordon, R. G., J. Electrochem. Soc. 139, 2014, (1992).Google Scholar
2. Chopra, K. L., Major, S. and Pandya, D. K., Thin Solid Film 102, 71, (1984).Google Scholar
3. Emanetoglu, N. W., Liang, S., Gorla, C., Lu, Y., Jen, S., and Subramanian, R., 1997 IEEE Ultrasonics Symposium, p. 195.Google Scholar
4. Makishima, Y., Hashimoto, K. and Yamaguchi, M., Jpn. J. Appl. Phys. Part 1, 33, 2998, (1994).Google Scholar
5. Wu, M., Azuma, A., Shiosaki, T. and Kawabata, A., J. Appl. Phys. 62, 2482, (1987).Google Scholar
6. Barker, A., Crowther, S., Rees, D., Sensors and Actuators A 58, 229, (1997).Google Scholar
7. Peregol, D., Pic, E. and Plantier, J., J. Appl. Phys. 62, 2563, (1987).Google Scholar
8. Heideman, R. G., Lambeck, P. V., Gardeniers, J. G. E., Optical Materials 4, 741, (1995).Google Scholar
9. Hamdani, F., Smith, D. J., Tang, H., Kim, W., Salvador, A., Botcharev, A. E., Gibson, J. M., Polyakov, A. Y., Skowronski, M., and Morkoc, H., J. Appl. Phys. 83, 983, (1998).Google Scholar
10. Johnson, M. A. L., Fujita, S., Rowland, W. H., Hughes, W. C., Cook, J. W., and Schetzina, F., J. Electron. Mater. 25, 855, (1996).Google Scholar
11. Mollwo, Erich, Photoconductivity Conf. (Wiley, New York), p. 509, (1956).Google Scholar
12. Miller, P. H. Jr., Photoconductivity Conf. (Wiley, New York), p. 287, (1956).Google Scholar
13. Fabricius, H., Skettrup, T. and Bisgaard, P., Appl. Optics, 25, 2764, (1986).Google Scholar
14. Liang, S., Gorla, C. R., Emanetoglu, N., Liu, Y., Mayo, W. E. and Lu, Y., J. Electron. Mater., 27, L72 (1998).Google Scholar
15. Gorla, C. R., Emanetoglu, N. W., Liang, S., Mayo, W. E., Lu, Y., Wraback, M. and Shen, H., J. Appl. Phys., 85, 2595, (1999).Google Scholar
16. Mead, C. A., Pyhs. Lett, 18, 218, (1965).Google Scholar
17. Takahashi, Y., Kanamori, M., Kondoh, A., Minoura, H. and Ohya, Y., Jpn. J. Appl. Phys. 33, 6611, (1994).Google Scholar
18. Zhang, D. H. and Brodie, D. E., Thin Solid Films 261, 334, (1995).Google Scholar
19. Zhang, D. H., J. Phys. D Appl. Phys. 28, 1273, (1995).Google Scholar