Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T05:03:58.211Z Has data issue: false hasContentIssue false

High-Energy Ion-Implantation of a Moderately Deep Acceptor Hg Into Liquid Encapsulated Czochralski Grown GaAs : Formation of New Shallow Emission Bands

Published online by Cambridge University Press:  21 February 2011

K. Harada
Affiliation:
Tokai University, Hiratsuka, Kanagawa, 259-12, Japan.
Y. Makita
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305, Japan.
H. Shibata
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305, Japan.
B. Lo
Affiliation:
Cheikh Anta Diop University, Dakar / Senegal.
A. C. Beye
Affiliation:
Cheikh Anta Diop University, Dakar / Senegal.
M. P. Halsalic
Affiliation:
University of Manchester, Manchester M60 1QD, England.
S. Kimura
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305, Japan.
N. Kobayashi
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305, Japan.
T. Iida
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305, Japan.
T. Shima
Affiliation:
China University, Chiba-shi, Chiba 263, Japan.
A. Obara
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305, Japan.
Get access

Abstract

Hg (mercury) in GaAs is known to be a moderately deep acceptor impurity, having a 52 meV activation energy. Optical properties of Hg acceptors in GaAs were systematically investigated as a function of Hg concentration, [Hg]. Samples were prepared by high-energy ion-implantation of Hg+ into GaAs grown by the liquid encapsulated Czochralski (LEC) method. Heat treatment was made by furnace annealing and rapid thermal annealing. Photoluminescence measurements at 2K revealed that the Hg-related so-called “g” line is formed in addition to the well-defined conduction band-to-Hg acceptor transition, (e, Hg). Additionally, three shallow emissions are formed for net hole concentrations INA-NDI greater than 2×1017cm−3 . This is the first demonstration that even Hg in GaAs makes multiple shallow emissions due to acceptor-acceptor pairs and LEC GaAs can be used for the investigations of these emissions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Shibata, H., Makita, Y., Mori, M., Nakayama, Y., Takahashi, T., Yamada, A., Mayer, K. M., Ohnishi, N., and Beye, A.C., “GaAs and Related Compounds 1989”, Eds. Ikoma, T. and Watanabe, H. (Inst. of Phys., Bristol, 1989), p.245.Google Scholar
2 Makita, Y., Takeuchi, Y., Ohnishi, N., Nomura, T., Kudo, K., Tanaka, H., Lee, H-C., Mori, M. and Mitsuhashi, Y., Appl. Phys. Lett., 49, 1184 (1986).Google Scholar
3 Nomura, T., Makita, Y., Ine, K., Ohnishi, N., Kudo, K., Tanaka, H. and Mitsuhashi, Y., Appl. Phys. Lett., 48, 1745 (1986).Google Scholar
4 Tang, A.C.T., Gardner, S.R., Sealy, B.J., and Gillin, W.G., Electron.Lett. 25, 1618 (1989).Google Scholar
5 Gillin, W.P. and Sealy, B.J., J. Appl. Phys. 71, 2021 (1992).Google Scholar
6 Kawasumi, Y., Kimura, S., Iida, T., Obara, A., Shibata, H., Kobayashi, N., Tsukamoto, T. and Makita, Y., accepted for publication in Nucl. Instr. and Meth.Google Scholar
7 Harada, K., Lo, B., Makita, Y., Beye, A. C., Halsall, M. P., Kimura, S., Kobayashi, N., Iida, T., Shima, T., Shibata, H. and Obara, A., Appl. Phys. Lett. 66, Nov. (1995).Google Scholar
8 Beye, A.C., Garcia, J.C., Neu, G., Contour, J.P., and Massies, J., Solid State Commun., 67, 1239 (1988).Google Scholar
9 Ohnishi, N., Makita, Y., Mori, M., Irie, K., Takeuchi, Y. and Shigetomi, S., J.Appl.Phys., 62, 1833 (1987).Google Scholar