No CrossRef data available.
Article contents
High-Energy Ion-Implantation of a Moderately Deep Acceptor Hg Into Liquid Encapsulated Czochralski Grown GaAs : Formation of New Shallow Emission Bands
Published online by Cambridge University Press: 21 February 2011
Abstract
Hg (mercury) in GaAs is known to be a moderately deep acceptor impurity, having a 52 meV activation energy. Optical properties of Hg acceptors in GaAs were systematically investigated as a function of Hg concentration, [Hg]. Samples were prepared by high-energy ion-implantation of Hg+ into GaAs grown by the liquid encapsulated Czochralski (LEC) method. Heat treatment was made by furnace annealing and rapid thermal annealing. Photoluminescence measurements at 2K revealed that the Hg-related so-called “g” line is formed in addition to the well-defined conduction band-to-Hg acceptor transition, (e, Hg). Additionally, three shallow emissions are formed for net hole concentrations INA-NDI greater than 2×1017cm−3 . This is the first demonstration that even Hg in GaAs makes multiple shallow emissions due to acceptor-acceptor pairs and LEC GaAs can be used for the investigations of these emissions.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1996