Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T23:13:12.822Z Has data issue: false hasContentIssue false

High Temperature Creep-Fatigue Design and Service Experience

Published online by Cambridge University Press:  15 March 2011

A-A. F. Tavassoli
Affiliation:
Commissariat á l'Energie Atomique, DEN/DMN, 91191 Gif-sur-Yvette, France
B. Fournier
Affiliation:
Commissariat á l'Energie Atomique, DEN/DMN, 91191 Gif-sur-Yvette, France
M. Sauzay
Affiliation:
Commissariat á l'Energie Atomique, DEN/DMN, 91191 Gif-sur-Yvette, France
Get access

Abstract

Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances under creep-fatigue hold the key to success. This paper presents extended experimental results obtained from creep, fatigue and creep-fatigue tests on the main structural materials retained for these concepts, namely: stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and its low activation derivatives such as Eurofer steel, and their more advanced grades strengthened by oxide dispersion. It shows that the existing recommendations made in design codes adequately cover individual damage due to creep or fatigue but often fall short under combined creep-fatigue interaction. This is partly due to the difficulties of reproducing service conditions in laboratory. In this paper, results from tests performed on components removed from reactor, after long service, are used to refine code recommendations.

Using the above combined assessment, it is concluded that there is good confidence in predicting creep-fatigue damage for austenitic stainless steels. For the martensitic steels the effects of cyclic softening and microstructure coarsening throughout the fatigue life need more consideration in creep-fatigue recommendation. In the long-term development of ferritic/martensitic oxide dispersion strengthened grades with stable microstructure and no cyclic softening, appears promising provided problems associated with their fabrication and embrittlement are resolved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.A Technology Roadmap for Generation IV Nuclear Energy Systems, GIF-002-00, Issued by the U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December (2002).Google Scholar
2. Maisonnier, D., Cook, I., Sardain, P., Boccaccini, L., Pace, L. Di, Giancarli, L. Norajitra, P., Pizzuto, A.DEMO and fusion power plant conceptual studies in Europe”; Fusion Engineering and Design, 81(2006) S.112330 Google Scholar
3. Carre, F. and Serpantilé, J-P., “Synergies Between Fission and Fusion Nuclear Energy”, SFEN - Aix-en-Provence, January 22-24 (2007).Google Scholar
4. Ihli, T., Giancarli, L., Konishi, S., Malang, S., Najmabadi, F., Raffray, A.R., Sagara, A., Wu, Y., “Review of Blanket Designs for Advanced Fusionreactors”, ISFNT-8, Heidelberg, Germany, Sept. 30- Oct. 5 (2007).Google Scholar
5. Kohyama, A., Tavassoli, F., Zinkle, S., Carré, F., Billot, P., “Overview of Materials R&D for Fusion and Gen-IV”, ICFRM-13, 4-9 Dec. (2007), Nice, France Google Scholar
6. Tavassoli, A-A. F., “Assessment of Austenitic Stainless Steels”, Fusion Engineering and Design, 29 (1995) 371390.Google Scholar
7. Picker, C. (UK), Dietz, W. (D) and Tavassoli, A-A. (Fr), “European Materials Programme, Highlights and Progress” Int. Conf. on Fast Reactors and Related Fuel Cycles, Oct. 28- Nov. 1 (1991), Kyoto, Japan.Google Scholar
8. Séran, J-L., Billot, P., Dinechin, G. de, Forest, L., Cabrillat, M.T., Ancelet, O., GGaude-Fugarolas, D., Carlan, Y. de, Pierron, D., Riou, B., “Development of 9-12Cr Martensitic Steels for Future Nuclear Systems: Weldability Studies, Mechanical Characterization and Specification Improvements”, Proceedings HTR2006: 3rd Int. Topical Meeting on High Temperature Reactor Technology, Oct. 1-4, 2006, Johannesburg, South Africa.Google Scholar
9. Salavy, J-F., Boccaccini, L.V., Dinechin, G. De, Diegele, E., Giancarli, L., Lässer, R., Lins, W., Neuberger, H., Poitevin, Y., Stephan, Y., Rampal, G., Rigal, E., “Ferritic-Martensitic Steel Test Blanket Modules: status and future needs for design criteria requirements and fabrication validation”, ICFRM 13, 4-9 Dec. (2007), Nice, France Google Scholar
10. Lindau, R., Moeslang, A., Rieth, M., Klimiankou, M., Materna-Morris, E., Alamo, A., Tavassoli, A-A. F., et al, “Present development status of Eurofer and ODS-Eurofer for application in blanket concept”, Fusion Engineering and Design, vol. 75–79, Nov. (2005), pages 989-996, Proceeding of the 23rd Symposium of Fusion TechnologyGoogle Scholar
11. Tavassoli, A-A. F. and Séran, J-L., “ODS Ferritic Steels for Fuel Cladding”, EFDA Emerging Technology: Fusion Materials Science and Technology Topical Group - Research Project: Nano-Structured ODS Ferritic Steel Development Meeting, Garching, Germany, 21-22 Jan. (2008).Google Scholar
12. Breitling, H., Stärk, E., Livesey, V. B., Mottot, M. and Tavassoli, A-A. F., “Evaluation of Creep-Fatigue Behaviour of Austenitic Stainless Steels”, Structural Mechanics In Reactor Technology (SMIRT-12), BG12/2, Stuttgart, 15-20/08/93.Google Scholar
13. Fournier, B., Sauzay, M., Caïs, C., Noblecourt, M., Mottot, M., Allais, L., Tournie, I., Pineau, A., “Creep-fatigue interactions in a 9%Cr-1%Mo martensitic steel - Part I: mechanical tests results”, Metallurgical and Materials Transactions A21 February (2008) (in press).Google Scholar
14. Tavassoli, A-A. F., Mottot, M. et Pétrequin, P., “Sequential Creep-Fatigue Interaction in Austenitic 316L-SPH Stainless Steel”, IAEA Specialist meeting on load and time dependent material performance other than irradiation, IAEA-IWGFR-RRPC, Gillemot, F.., Edit. Budapest, 28-30 Jan. 1986, Budapest (1987). Also in J. of Theoretical & Applied Fracture Mechanics, 10 (1988) 49-57Google Scholar
15. Bretherton, I., Wareing, J., Tavassoli, A-A. F., Mottot, M., “Fatigue and creep-fatigue failure in wrought modified 9Cr-1Mo ferritic steel”, CEC, AEA Report 1997-0539Google Scholar
16. Haney, E., Dalle, F., Sauzay, M., Vincent, L., Allais, L., Tournié, I., B. Fournier. “Macroscopic results of long-term creep on modified 9Cr-1Mo steel (T91)”, Mat. Sci. Engineering A, (2008) (to appear)Google Scholar
17. Escaravage, C., Livesey, V. B., Wood, D.S., Breitling, H., Mottot, M. and Tavassoli, A. A. (Fr), “Low Cycle Fatigue of Austenitic Welds, Analysis of Collected Data” CEC Study Contracts RA1-0118F et RA1-0127F, Final Rep. EUR 14408 EN, ISSN 1018-5593 (1993).Google Scholar
18. Livesey, V. B., Breitling, H., Stärk, E., Mottot, M. and Tavassoli, A. A., “Evaluation of the Effect of Creep on the Fatigue Endurance of Austenitic Weld Metals and Implication to Design”, CEC Study Contract 0180-UK, Rapport AEA Technology, oct. (1994).Google Scholar
19. Sauzay, M., Mottot, M., Allais, L., Noblecourt, M., Monnet, I., Périnet, J., “Creep-fatigue behaviour of an AISI stainless steel at 550°C”, Nuclear Eng. & Design 232 (2004) 219236 Google Scholar
20.“Residual properties of in service aged stainless steels”, European Study Contract RA 93-229, prepared by CEA (France) and AEA (UK) (1993).Google Scholar
21. Tavassoli, A-A., “Assessment of Martensitic Steels for Advanced Fusion Reactors”, Session E08: Advanced Reactor Concepts, Structural Mechanics In Reactor Technology (SMIRT-13), Porte Alegre, 13-18 août (1995).Google Scholar
22. Tavassoli, A-A. F., “Fusion Demo Interim Structural Design Criteria (DISDC), Appendix A Material Design Limit Data: A3.S18E Eurofer Steel” TW5-TTMS-005-D01, Dec. (2007).Google Scholar
23. Boulanger, L., Bisson, A. et Tavassoli, A-A., “Labyrinth Structure and Persistent Slip Bands In Fatigued 316 Stainless Steel”, Phil. Mag. A, 1985, v. 51, No. 2, pp. L5– L11.Google Scholar
24. Déprés, C., Robertson, C.F. et Fivel, M.C., “Low-strain fatigue in AISI 316L steel surface grains: a 3D discrete dislocation dynamics modelling of the early cycles I- Dislocation microstructures and mechanical behaviour”, Philosophical Magazine, Vol. 84, No. 22, pp. 22572275 (2004).Google Scholar
25. Tavassoli, A-A. F., Fournier, B., Sauzay, M., “High temperature creep-fatigue design”, 5th International Conference on creep, fatigue and creep-fatigue interaction”, Sept. 24-26, (2008), IGCAR, Kalpakkam, India.Google Scholar
26. Fournier, B., “Fatigue-Fluage des aciers martensitiques á 9-12% Cr: Comportement et Endommagement”, Ph.D. Thesis, Rapport CEA-R-6161, ISSN 0429-3460, Nov. (2007).Google Scholar
27. Fournier, B., Sauzay, M., Caeïs, C., Noblecourt, M., Mottot, M., Bougault, A., Rabeau, V., Pineau, A., “Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel. Part I: Effect of tensile holding period on fatigue lifetime”, International Journal of Fatigue 30 (2008) 649662 Google Scholar
28. Fournier, B., Sauzay, M., Caeïs, C., Noblecourt, M., Mottot, M., Bougault, A., Rabeau, V., Pineau, A., “Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel. Part II: Effect of compressive holding period on fatigue lifetime”, International Journal of Fatigue 30 (2008) 663676 Google Scholar
29. Aktaa, J., Schmitt, R., “Creep-Fatigue lifetime prediction rules for ferritic/martensitic steels”, Final Report, Task: TW2-TTMS-005a, D4, FZK 6931, May (2004)Google Scholar
30. Sauzay, M., Brillet, H., Monnet, I., Mottot, M., Barcelo, F., Fournier, B., Pineau, A.. “Cyclically induced softening due to low-angle boundary annihilation in a martensitic steel.” Mat. Sci. Engineering A, 400–401, 241244 (2005).Google Scholar
31. Takahashi, Y., “Creep-fatigue behaviours of various alloys used in power industry and their predictability”, 5th International Conference on creep, fatigue and creep-fatigue interaction”, Sept. 24-26, (2008), IGCAR, Kalpakkam, India.Google Scholar
32. Moeslang, A., Adelhelm, C., Heidinger, R., “Innovative Materials for the Energy Technology”, International Journal of Materials Research, (2008)Google Scholar