Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T05:33:04.755Z Has data issue: false hasContentIssue false

High Temperature Clay Filled Epoxy Composites

Published online by Cambridge University Press:  26 February 2011

Dharmaraj Raghavan
Affiliation:
[email protected], Howard, Chemistry, 525 College Street, NW, Washington DC, DC, 20059, United States
Joseph Ktoo Langat
Affiliation:
[email protected], Howard University, Department of Chemistry, 525 College Street, Washington, DC, 20059, United States
Mauro Zammarano
Affiliation:
[email protected], National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
Jeffrey Gilman
Affiliation:
[email protected], National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
Get access

Abstract

The primary objective of this study is to improve the thermal stability of clay and clay filled composite. An epoxy-clay composite has been prepared by dispersing 1-hexadecyl-3-(6-hydroxyhexyl)-2-methylimidazolium modified clay in an epoxy resin and cured with metaphenylene diamine (m-PDA) at 110.0 °C for 7 h and post cured at 140°C for 4 h. The thermal stability of the modified clay and clay filled epoxy composite was characterized via thermogravimetric analysis (TGA). The onset decomposition temperature of the imidazolium functionalized clay was 360°C. Transmission Electron Microscopy (TEM) of the composite showed mixed morphology with predominant fraction of intercalated clay platelets in the epoxy matrix. The onset decomposition temperature of the modified clay filled epoxy composite was found to be higher than that of pristine epoxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Langat, J., Bellayer, S., Hudrlik, P., Hudrlik, A., Maupin, P.H., Gilman, J.W., Raghavan, D.. Polymer 47 (2006) 66986709 10.1016/j.polymer.2006.06.067Google Scholar
2. Liu, T., Lim, K.P., Tjiu, W.C., Pramoda, K.P., Chen, Z. Kuan. Polymer 44 (2003) 35293535 10.1016/S0032-3861(03)00252-0Google Scholar
3. Messersmith, Paul and Giannelis, E. P.. Chem Mater (1994) 1719–172510.1021/cm00046a026Google Scholar
4. Koerner, H., Misra, D., Tan, A., Drummy, L., Mirau, P., and Mirau, R.. Polymer 47 (2006) 34263435 Google Scholar
5. Bottino, F., Fabbri, E., Fragala, I. et al. Macromol Rapid Communication 24 (2003) 10701084 10.1002/marc.200300054Google Scholar
6. Awad, W., Gilman, J.W., Nyden, M., Harris, R.H., Sutto, T., Callahan, J., Trulove, P., Delong, H., Fox, D.. Thermochemica Acta 409 (2004) 311 Google Scholar
7. Xie, W., Gao, Z., Pan, W-P., Hunter, D., Singh, A., Vaia, R.. Chem Matter 13 (2001) 2979 10.1021/cm010305sGoogle Scholar
8. Xie, W., Gao, Z., Pan, W-P., Vaia, R., Hunter, D., Sighn, A.. Thermochim Acta 339 (2001) 367368 Google Scholar
9. Zhao, H., Malhorta, S.V., Luo, R.G.. Phys. Chem. Liquids 41 (2003) 487.10.1080/0031910031000155452Google Scholar
10. Gilman, J. W., Awad, W. H., Davis, R. D., Sheilds, J., Harris, R. H. Jr, Davis, C., Morgan, A. B., Sutto, T. E., Callahan, J., Trulove, P. C., and DeLong, H. C., Chem. Mater., 14 (2002): 37763786.10.1021/cm011532xGoogle Scholar
11. Langat, J., Zammarano, M., Raghavan, D., Gilman, J.W., Polymer (to be submitted). Google Scholar