Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T01:32:45.296Z Has data issue: false hasContentIssue false

High specific capacity and excellent stability of interface-controlled MWCNT based anodes in lithium ion battery

Published online by Cambridge University Press:  13 September 2011

Indranil Lahiri
Affiliation:
Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, U.S.A.
Sung-Woo Oh
Affiliation:
Department of Energy Engineering, Hanyang University, Seoul 133791, Korea
Yang-Kook Sun
Affiliation:
Department of Energy Engineering, Hanyang University, Seoul 133791, Korea
Wonbong Choi
Affiliation:
Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, U.S.A.
Get access

Abstract

Rechargeable batteries are in high demand for future hybrid vehicles and electronic devices markets. Among various kinds of rechargeable batteries, Li-ion batteries are most popular for their obvious advantages of high energy and power density, ability to offer higher operating voltage, absence of memory effect, operation over a wider temperature range and showing a low self-discharge rate. Researchers have shown great deal of interest in developing new, improved electrode materials for Li-ion batteries leading to higher specific capacity, longer cycle life and extra safety. In the present study, we have shown that an anode prepared from interface-controlled multiwall carbon nanotubes (MWCNT), directly grown on copper current collectors, may be the best suitable anode for a Li-ion battery. The newly developed anode structure has shown very high specific capacity (almost 2.5 times as that of graphite), excellent rate capability, nil capacity degradation in long-cycle operation and introduced a higher level of safety by avoiding organic binders. Enhanced properties of the anode were well supported by the structural characterization and can be related to very high Li-ion intercalation on the walls of CNTs, as observed in HRTEM. This newly developed CNT-based anode structure is expected to offer appreciable advancement in performance of future Li-ion batteries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nazri, G.-A., Pistoia, G., in Lithium Batteries: Science and Technology, (Springer Science+Business Media: New York, 2009).Google Scholar
2. Manev, V., Naidenov, I., Puresheva, B., Zlatilova, P. and Pistoia, G., J. Power Sources 55, 211 (1995).Google Scholar
3. Dai, H., Javey, A., Pop, E., Mann, D., Lu, Y., Nano 1, 1 (2006).Google Scholar
4. Yang, Z.-H., Wu, H.-Q., Mater. Chem. Phys. 71, 7 (2001).Google Scholar
5. Frackowiak, E., Béguin, F., Carbon 40, 1775 (2002).Google Scholar
6. Shin, H.-C., Liu, M., Sadanadan, B., Rao, A.M., J. Power Sources 112, 216 (2002).Google Scholar
7. Guo, A.P., Zhao, Z.W., Liu, H.K., Dou, S.X., Carbon 43, 1392 (2005).Google Scholar
8. Yoo, E. J., Kim, J., Hosono, E., Zhoi, H.-S., Kudo, T., Honma, I., Nano Lett. 8, 2277 (2008).Google Scholar
9. Boukamp, B.A., Lesh, G. C., Huggins, R.A., J. Electrochem. Soc. 128, 725 (1981).Google Scholar
10. Paek, S.-M., Yoo, E.-J., Honma, I., Nano Lett. 9, 72 (2009).Google Scholar
11. Fan, J., Wang, T., Yu, C., Tu, B., Jiang, Z., Zhao, D., Adv. Mater. 16, 1432 (2004).Google Scholar
12. Chan, C. K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y., Nature Nanotech. 3, 31 (2008).Google Scholar
13. Zhang, S.S., Jow, T.R., J. Power Sources 109, 422 (2002).Google Scholar
14. Guerfi, A., Kaneko, M., Petitclerc, M., Mori, M., Zaghib, K., J. Power Sources 163, 1047 (2007).Google Scholar
15. Zhang, S.S., Xu, K., Jow, T.R., J Power Sources 138, 226 (2004).Google Scholar
16. Roth, E.P., Doughty, D.H., Franklin, J., J. Power Sources 134, 222 (2004).Google Scholar
17. Lahiri, I., Oh, S.-W., Hwang, J.Y., Cho, S., Sun, Y.K., Banerjee, R., Choi, w., ACS Nano 4, 3440 (2010).Google Scholar
18. Lahiri, I., Seelaboyina, R., Hwang, J.Y., Banerjee, R., Choi, W., Carbon 48, 1531 (2010).Google Scholar
19. Masarapu, C., Subramanian, V., Zhu, H., Wei, B., Adv. Func. Mater. 19, 1008 (2009).Google Scholar
20. Chen, W. X., Lee, J. Y., Liu, Z., Electrochem. Comm. 4, 260 (2002).Google Scholar
21. Nishidate, K., Hasegawa, M.. Phys. Rev. B 71, 245418 (2005).Google Scholar
22. Shu, J., Li, H., Yang, R., Shi, Y., Huang, X., Electrochem. Comm. 8, 51 (2006).Google Scholar
23. Wang, Y., Zeng, H.C., Lee, J.Y., Adv. Mater. 18, 645 (2006).Google Scholar
24. Zhang, Y., Zhang, X.G., Zhang, H.L., Zhao, Z.G., Li, F., Liu, C., Cheng, H.M., Electrochimica Acta 51, 4994 (2006).Google Scholar
25. Wang, W., Kumta, P.N., J. Power Sources 172, 650 (2007).Google Scholar
26. Park, M.-S., Needham, S. A., Wang, G.-X., Kang, Y.-M., Park, J.-S., Dou, S.-X., Liu, H.-K., Chem. Mater. 19, 2406 (2007).Google Scholar
27. Li, C., Sun, N., Ni, J., Wang, J., Chu, H., Zhou, H., Li, M.. Li, Y., J. Solid State Chem. 181, 2620 (2008).Google Scholar
28. Zheng, S.-F., Hu, J.-S., Zhong, L.-S., Song, W.-G., Wan, L.-J., Guo, Y.-G., Chem. Mater. 20, 3617 (2008).Google Scholar
29. Landi, B.J., Ganter, M.J., Schauerman, C.M., Cress, C.D., Raffaelle, R.P., J. Phys. Chem. C 112, 7509 (2008).Google Scholar
30. Wang, M., Li, Z.H., Wu, G.T., Russ, . J. Electrochem. 41, 1066 (2005).Google Scholar
31. Chen, J., Wang, J.Z., Minett, A.I., Liu, Y., Lynam, C., Liu, H., Wallace, G.G., Energy Environ. Sci. 2, 393 (2009).Google Scholar
32. NuLi, Y., Yang, J., Jiang, M., Mater. Lett. 62, 2092 (2008).Google Scholar
33. Wang, D., Choi, D., Li, J., Yang, Z., Nie, Z., Kou, R., Hu, D., Wang, C., Saraf, L.V., Zhang, J., Aksay, I.A., Liu, J., ACS Nano 3, 907 (2009).Google Scholar