Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:34:12.950Z Has data issue: false hasContentIssue false

High Sensitivity Photonic Crystal Biosensor Incorporating Nanorod Structures for Enhanced Surface Area

Published online by Cambridge University Press:  01 February 2011

Wei Zhang
Affiliation:
[email protected], University of Illinois at Urbana - Champaign, Department of Materials Science and Engineering, 208 North Wright Street, Urbana, IL, 61801, United States, 217-244-0613
Nikhil Ganesh
Affiliation:
[email protected], University of Illinois at Urbana - Champaign, Nano Sensors Group, 208 North Wright Street, Urbana, IL, 61801, United States
Ian D. Block
Affiliation:
[email protected], University of Illinois at Urbana - Champaign, Nano Sensors Group, 208 North Wright Street, Urbana, IL, 61801, United States
Brian T. Cunningham
Affiliation:
[email protected], University of Illinois at Urbana - Champaign, Nano Sensors Group, 208 North Wright Street, Urbana, IL, 61801, United States
Get access

Abstract

We report efforts at enhancement of the surface area of a photonic crystal biosensor through incorporation of a porous titanium dioxide film into the device. The film possessing the structure of nanorods is deposited by the glancing angle deposition technique. Results for detection of polymer films, large proteins and small molecules indicate up to a four-fold enhancement of detected adsorbed mass density for high surface area sensors, compared with sensors without the high surface area coating.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cunningham, B. T., Li, P., Schulz, S., Lin, B., Baird, C., Gerstenmaier, J., Genick, C., Wang, F., Fine, E., and Laing, L., Journal of Biomolecular Screening 9, 481490 (2004).Google Scholar
2 Cunningham, B. T. and Laing, L., Expert Review of Proteomics 3, 271281 (2006).Google Scholar
3 Lofas, S. and Johnsson, B., Journal of the Chemical Society-Chemical Communications, 15261528 (1990).Google Scholar
4 Lofas, S., Pure and Applied Chemistry 67, 829834 (1995).Google Scholar
5 Robbie, K., Friedrich, L. J., Dew, S. K., Smy, T., and Brett, M. J., Journal of Vacuum Science & Technology A 13, 10321035 (1995).Google Scholar
6 Xi, J. Q., Kim, J. K., Schubert, E. F., Ye, D. X., Lu, T. M., Lin, S. Y., and Juneja, J. S., Optics Letters 31, 601603 (2006).Google Scholar
7 Robbie, K., Hnatiw, A. J. P., Brett, M. J., MacDonald, R. I., and McMullin, J. N., Electronics Letters 33, 12131214 (1997).Google Scholar
8 Robbie, K., Broer, D. J., and Brett, M. J., Nature 399, 764766 (1999).Google Scholar
9 Cunningham, B., Lin, B., Qiu, J., Li, P., Pepper, J., and Hugh, B., Sensors and Actuators B 85, 219226 (2002).Google Scholar
10 Livnah, O., Bayer, E. A., Wilchek, M., and Sussman, J. L., Proceedings of the National Academy of Sciences of the United States of America 90, 50765080 (1993).Google Scholar