Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:16:33.384Z Has data issue: false hasContentIssue false

High Resolution DNA Imaging by Dynamic Atomic Force Microscopy: The Effect of the Substrate and Sample Preparation

Published online by Cambridge University Press:  28 February 2014

Tzu-Chieh Tang
Affiliation:
Laboratory for Energy and NanoScience (LENS), Institute Center for Future Energy (iFES), Masdar Institute of Science and Technology, Abu Dhabi, UAE
Carlo A. Amadei
Affiliation:
Laboratory for Energy and NanoScience (LENS), Institute Center for Future Energy (iFES), Masdar Institute of Science and Technology, Abu Dhabi, UAE
Matteo Chiesa*
Affiliation:
Laboratory for Energy and NanoScience (LENS), Institute Center for Future Energy (iFES), Masdar Institute of Science and Technology, Abu Dhabi, UAE
Get access

Abstract

Adsorption of charged biomolecules onto atomically flat mica substrates is facilitated by the deposition of metal ions. Despite successfully acting as preferential anchoring sites, the presence of ions on the mica surface also changes its physicochemical characteristics something that is rarely quantified from a nanoscale point of view. In this study the nanoscale physicochemical properties of nickel-functionalized Muscovite mica are investigated by reconstructing the conservative force profile between an atomic force microscopy (AFM) tip and the surface. Various nickel ion concentrations (i.e. 1.0 mM to 20.0 mM) along with different incubation times (30 seconds and 5 minutes) are directly analyzed. Details in the spatial and temporal variations in surface properties due to the ion mediated adsorption of water are presented in details and in light of the binding efficiency of the metal ions. This insight benefits our understanding in the behavior of ion distribution that plays a crucial role in biomolecule imaging using AFM.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kasas, S.; Thomson, N. H.; Smith, B. L.; Hansma, P. K.; Miklossy, J.; Hansma, H. G. International Journal of Imaging Systems and Technology 1997, 8 (2), 151161.3.0.CO;2-9>CrossRefGoogle Scholar
Hansma, H. G.; Laney, D. E. Biophysical journal 1996, 70 (4), 19331939.CrossRefGoogle Scholar
Piétrement, O.; Pastré, D.; Fusil, S.; Jeusset, J.; David, M.-O.; Landousy, F.; Hamon, L.; Zozime, A.; Le Cam, E. Langmuir : the ACS journal of surfaces and colloids 2003, 19 (7), 25362539.CrossRefGoogle Scholar
Guthold, M.; Zhu, X.; Rivetti, C.; Yang, G.; Thomson, N. H.; Kasas, S.; Hansma, H. G.; Smith, B.; Hansma, P. K.; Bustamante, C. Biophysical journal 1999, 77 (4), 22842294.CrossRefGoogle Scholar
McMaster, T. J.; Miles, M. J.; Shewry, P. R.; Tatham, A. S. Langmuir : the ACS journal of surfaces and colloids 2000, 16 (4), 14631468.CrossRefGoogle Scholar
Hsueh, C.; Chen, H.; Gimzewski, J. K.; Reed, J.; Abdel-Fattah, T. M. ACS applied materials & interfaces 2010, 2 (11), 3249–56.CrossRefGoogle Scholar
Pashley, R. M. Journal of colloid and interface science 1981, 83 (2), 531546.CrossRefGoogle Scholar
Pashley, R. M.; Israelachvili, J. N. Journal of colloid and interface science 1984, 101 (2), 511523.CrossRefGoogle Scholar
Pashley, R.; Quirk, J. Colloids and surfaces 1984, 9 (1), 117.CrossRefGoogle Scholar
Sushko, M.; Shluger, A.; Rivetti, C. Langmuir : the ACS journal of surfaces and colloids 2006, 22 (18), 76787688.CrossRefGoogle Scholar
Cheng, H.; Zhang, K.; Libera, J. A.; Olvera de La Cruz, M.; Bedzyk, M. J. Biophysical journal 2006, 90 (4), 11641174.CrossRefGoogle Scholar
Pastre, D.; Pietrement, O.; Fusil, S.; Landousy, F.; Jeusset, J.; David, M. O.; Hamon, L.; Le Cam, E.; Zozime, A. Biophysical journal 2003, 85 (4), 2507–18.CrossRefGoogle Scholar
Sader, J. E.; Jarvis, S. P. Applied Physics Letters 2004, 84 (10), 18011803.CrossRefGoogle Scholar
Katan, A. J.; Es, Van, , M. H.; Oosterkamp, T. H. Nanotechnology 2009, 20 (16), 165703.CrossRefGoogle Scholar
Amadei, C. A.; Tang, T. C.; Chiesa, M.; Santos, S. The Journal of Chemical Physics 2013, 139 (8), 084708–7.CrossRefGoogle Scholar
Amadei, C. A.; Santos, S.; Pehkonen, S.; Verdaguer, A.; Chiesa, M. Journal of Physical Chemistry C 2013, In print.Google Scholar
Balmer, T. E.; Christenson, H. K.; Spencer, N. D.; Heuberger, M. Langmuir : the ACS journal of surfaces and colloids 2008, 24 (4), 1566–9.CrossRefGoogle Scholar
Rodriguez, T. R.; Garcia, R. Applied Physics Letters 2002, 80 (9), 16461648.CrossRefGoogle Scholar
García, R.; San Paulo, A. Physical Review B 1999, 60 (7), 49614967.CrossRefGoogle Scholar
Garcı́a, R.; San Paulo, A. Ultramicroscopy 2000, 82 (1–4), 7983.CrossRefGoogle Scholar
Santos, S.; Guang, L.; Souier, T.; Gadelrab, K.; Chiesa, M.; Thomson, N. H. Review of Scientific Instruments 2012, 83 (4), 043707–11.CrossRefGoogle Scholar
Santos, S.; Barcons, V.; Verdaguer, A.; Font, J.; Thomson, N. H.; Chiesa, M. Nanotechnology 2011, 22 (34), 345401.CrossRefGoogle Scholar
Guzman, H. V.; Perrino, A. P.; Garcia, R. ACS nano 2013, 7 (4), 31983204.CrossRefGoogle Scholar
Tirado, M. M.; Martinez, C. L.; de la Torre, J. G. The Journal of chemical physics 1984, 81, 2047.CrossRefGoogle Scholar
Verdaguer, A.; Santos, S.; Sauthier, G.; Segura, J. J.; Chiesa, M.; Fraxedas, J. Physical chemistry chemical physics : PCCP 2012, 14 (46), 16080–7.CrossRefGoogle Scholar
Sergio, S.; Albert, V.; Tewfic, S.; Neil, H. T.; Matteo, C. Nanotechnology 2011, 22 (46), 465705.Google Scholar
Santos, S.; Stefancich, M.; Hernandez, H.; Chiesa, M.; Thomson, N. H. The Journal of Physical Chemistry C 2012, 116 (4), 28072818.CrossRefGoogle Scholar
Ellis, J. S.; Abdelhady, H. G.; Allen, S.; Davies, M. C.; Roberts, C. J.; Tendler, S. J.; Williams, P. M. Journal of microscopy 2004, 215 (Pt 3), 297301.CrossRefGoogle Scholar