Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:44:07.040Z Has data issue: false hasContentIssue false

High Rate Deposition of Stable Hydrogenated Amorphous Silicon in Transition from Amorphous to Microcrystalline Silicon

Published online by Cambridge University Press:  01 February 2011

Guofu Hou
Affiliation:
Institute of Photoelectronics, Nankai University, Tianjin, 300071, P.R.China
Xinhua Geng
Affiliation:
Institute of Photoelectronics, Nankai University, Tianjin, 300071, P.R.China
Xiaodan Zhang
Affiliation:
Institute of Photoelectronics, Nankai University, Tianjin, 300071, P.R.China
Ying Zhao
Affiliation:
Institute of Photoelectronics, Nankai University, Tianjin, 300071, P.R.China
Junming Xue
Affiliation:
Institute of Photoelectronics, Nankai University, Tianjin, 300071, P.R.China
Huizhi Ren
Affiliation:
Institute of Photoelectronics, Nankai University, Tianjin, 300071, P.R.China
Jian Sun
Affiliation:
Institute of Photoelectronics, Nankai University, Tianjin, 300071, P.R.China
Dekun Zhang
Affiliation:
Institute of Photoelectronics, Nankai University, Tianjin, 300071, P.R.China
Yueqin Xu
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd, Golden CO80401, U.S.A
Get access

Abstract

High rate deposition of high quality and stable hydrogenated amorphous silicon (a-Si:H) films were performed near the threshold of amorphous to microcrystalline phase transition using a very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) method. The effect of hydrogen dilution on optic-electronic and structural properties of these films was investigated by Fourier-transform infrared (FTIR) spectroscopy, Raman scattering and constant photocurrent method (CPM). Experiment showed that although the phase transition was much influenced by hydrogen dilution, it also strongly depended on substrate temperature, working pressure and plasma power. With optimized condition high quality and high stable a-Si:H films, which exhibit σphd of 4.4×106 and deposition rate of 28.8Å/s, have been obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Rech, B., Roschek, T., Muller, J., Wieder, S., Wagner, H., Solar Energy Materials & Solar Cells 66, 267 (2001).Google Scholar
[2] Guha, S., Xu, X., Yang, J., Banerjee, A., App l. Phys. Lett. 66 (5), 595597 (1995).Google Scholar
[3] Korevaar, B.A., et al, J. Non-Cryst. Solids, 266-269, 380 (2000)Google Scholar
[4] Matsumura, H., Japanese J. of Appl. Phys. 37, 3175 (1998)Google Scholar
[5] Nelson, B.P., Iwaniczko, E., Mahan, A.H., Wang, Qi, et al, Extended Abstract of the 1st International Conference on Cat-CVD process, Kanazawa, Japan, 2000, 291.Google Scholar
[6] Kondo, M., Nishimoto, T., Katai, M., Suzuki, S., Nasuno, Y. and Matsuda, A., Technical Digest of the International PVSEC-12, Jeju, Korea, 2001, 41.Google Scholar
[7] Kroll, U., Meier, J., Torres, P., Pohl, J. and Shah, A., J. Non-Cryst. Solids, 227-230, 68 (1998).Google Scholar
[8] Takai, M., Nishimoto, T., Takagi, T., Kondo, M., Matsuda, A., J. Non-Cryst. Solids, 266-269,90 (2000).Google Scholar
[9] Wang, Qi, Yue, Guozhen, Li, Jing, Han, Daxing, Solid state communication 113, 175 (2000).Google Scholar
[10] Hou, Gguofu, Mai, Yaohua, Geng, Xinhua, Zhang, Xiaodan, et al, Physica.Status.Solidi B, (unpublished)Google Scholar
[11] Ray, Swati, Das, Chandan, Mukhopadhyay, S., Csaha, S., Solar Energy Materials & Solar Cells 66, 393 (2002).Google Scholar
[12] Yang, J., Banerjee, A. and Guha, S., Appl. Phys. Lett. 70 (22), 29752977(1997).Google Scholar
[13] Brodsky, M.H., Cardona, M. and Cuomo, J.J., Phys. Rev. B16, 3556 (1977).Google Scholar
[14] Droz, C., Vallat-Sauvain, E., Bailat, J., Feitknecht, L., Shah, A., European PVSECE-17, Munich, Oct.22~26, 2001, 1.Google Scholar
[15] Klein, S., Finger, F., Cariu, R., Wagner, H., Thin Solid Films 395, 305 (2001).Google Scholar
[16] Martins, R., Aguas, H., Ferreira, I., Fortunato, E. and Guimaraes, L., Solar Energy 69 (1–6), 257262 (2000).Google Scholar
[17] Cardona, M., Physica. Status. Solidi, B118, 463 (1983).Google Scholar
[18] Sheng, Shuran, Liao, Xianbo, Kong, Guangli and Han, Hexiang, Appl. Phys. Lett. 73 (3), 336338 (1998).Google Scholar
[19] Deng, X.M., Phys. Rev. B43, 4820 (1991).Google Scholar
[20] Sheng, Shuran, Liao, Xianbo and Kong, Guangli, Appl. Phys. Lett. 78 (17), 25092511 (2001)Google Scholar