Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T18:00:49.605Z Has data issue: false hasContentIssue false

High Quality YBaCuO Thin Film Growth by Low-Temperature Metalorganic Chemical Vapor Deposition Using Nitrous Oxide

Published online by Cambridge University Press:  15 February 2011

Hideaki Zama
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152. Japan
Jun Saga
Affiliation:
Department of Electrical and Electronic Engineering, Musashi Institute of Technology, Tamazutsumi, Setagaya-ku, Tokyo 158, Japan
Takeo Hattor
Affiliation:
Department of Electrical and Electronic Engineering, Musashi Institute of Technology, Tamazutsumi, Setagaya-ku, Tokyo 158, Japan
Shunri Oda
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152. Japan
Get access

Abstract

Low-temperature growth of YBa2Cu3Ox films by metalorganic chemical vapor deposition using N2O as an oxidizing agent has been investigated. We have deposited superconducting YBa2Cu3Ox on (100)MgO substrates at 500°C for the first time. Films of 15nm-thick show zero-resistivity critical temperature of 80K. Films of as thin as three unit-cell-thick reveal the superconducting onset characteristics. This result suggests that superconductivity is arisen even from effectively monomolecular layer of YBa2Cu3Ox when we take into account monomolecular buffer layer and monomolecular cap layer. YBa2Cu3Ox films of 9nm-thick grown on (100)SrTiO3 at 600°C with Tc(zero) of 79K and with peak to valley roughness fluctuation of two unit-cell have been obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yamane, H., Hasei, M., Kurosawa, H. and Hirai, T., Jpn. J. Appl. Phys. 30, L1003 (1991).Google Scholar
2. Tsuruoka, T., Kawasaki, R. and Abe, H., Jpn. J. Appl. Phys. 28, L1800 (1989).Google Scholar
3. Li, Y.Q., Zhao, J., Chern, C.S., Huang, W., Kulesha, G.A., Lu, P., Gallois, B., Norris, P., Kear, B. and Cosandey, F., Appl. Phys. Lett. 58, 648(1991).Google Scholar
4. Higashiyama, K., Ushida, T., Higa, H., Hirabayashi, I. and Tanaka, S., Jpn. J. Appl. Phys. 30, 1209(1991).Google Scholar
5. Ohnishi, H., Harima, H., Kusakabe, Y., Kobayashi, M., Hoshinouchi, S. and Tachibana, K., Jpn. J. Appl. Phys. 29, L2041(1990).Google Scholar
6. Zama, H., Oda, S., Miyake, T. and Hattori, T., Physica C 190, 656(1991).Google Scholar
7. Zama, H., Miyake, T., Hattori, T. and Oda, S.: Jpn. J. Appl. Phys. 31, 3839(1992).CrossRefGoogle Scholar
8. Oda, S., Zama, H., Ohtsuka, T., Sugiyama, K. and Hattori, T., Jpn. J. Appl. Phys. 28, L427(1989).Google Scholar
9. Zama, H., Oda, S., Saga, J. and Hattori, T., Advances in Superconductivity VI (submitted).Google Scholar
10. Terashima, T., Iijima, K., Yamamoto, K., Hirata, K., Bando, Y. and Takada, T., Jpn. J. Appl. Phys. 28, L987(1989).Google Scholar
11. Terashima, T., Shimura, K., Bando, Y., Matsuda, Y., Fujiwara, A. and Komiyama, S., Phys. Rev. Lett. 67, 1362(1991).Google Scholar
12. Kwon, C., Li, Qi, Xi, X.X., Bhattacharya, S., Doughty, C., Venkatesan, T., Zhang, H., Lynn, J.W., Peng, J.L., Li, Z.Y., Spencer, N.D. and Feldman, K., Appl. Phys. Lett. 62. 1289(1993).Google Scholar