Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T18:11:17.596Z Has data issue: false hasContentIssue false

High Pressure Studies of Sm2+-Doped Sol-Gel Glasses

Published online by Cambridge University Press:  21 March 2011

Vilma C. Costa
Affiliation:
Department of Chemistry, Washington State University, Pullman, WA 99164
Yongrong Shen
Affiliation:
Department of Chemistry, Washington State University, Pullman, WA 99164
Kevin L. Bray
Affiliation:
Department of Chemistry, Washington State University, Pullman, WA 99164
Ana M. M. Santos
Affiliation:
Center of Nuclear Technology Development / CDTN, CP 941, Pampulha, Belo Horizonte, MG, Brazil, 30123-970
Get access

Abstract

Glasses containing nominally 1, 2, 5, and 10 wt% Sm2O3 in Na2O-Al2O3-SiO2 and Al2O3-SiO2 were prepared from metal alkoxide solution using the sol-gel process. After low temperature heat treatment in air, the glasses were heated up to 800 °C under a flowing H2 atmosphere to reduce Sm3+ into Sm2+. Samarium ions in the divalent and trivalent states were identified by fluorescence measurements. The fluorescence properties of Sm2+ions are discussed in relation to concentration of Sm2O3 and the glass matrix composition. Preliminary results of pressure studies on the luminescence spectra and lifetime of Sm2+ in the glasses are presented as well.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Macfarlane, R. M. and Shelby, R. M., Opt. Lett. 9, 533 (1984).Google Scholar
2. Jaaniso, R. and Bill, H., Europhys. Lett. 16, 569 (1991).Google Scholar
3. Cho, D. H., Hirao, K., and Soga, N., J. Non-Cryst. Sol. 189, 181 (1995).Google Scholar
4. Hirao, K., Todoroki, S., and Soga, N., J. Lumin. 55, 217 (1993).Google Scholar
5. Nogami, M., Abe, Y., Hirao, K., and Cho, D. H., Appl. Phys. Lett. 66, 2952 (1995).Google Scholar
6. Shen, Y. R. and Holzapfel, W. B., J. Phys: Condes. Matter 6, 2267 (1994)Google Scholar
7. Tröster, Th., Gregorian, T., and Holzapfel, W. B., Phys. Rev. B 48, 2960 (1993).Google Scholar
8. Shen, Y. R. and Bray, K. L., Phys. Rev. B 58, 11944 (1998).Google Scholar
9. Shen, Y. R. and Holzapfel, W. B., Phys. Rev. B 52, 12618 (1995).Google Scholar
10. Lochhead, M. J. and Bray, K. L., Phys. Rev. B 52, 15763 (1995).Google Scholar
11. Jayasankar, C. K., Babu, P.. Tröster, Th., and Holzapfel, W. B., J. Lumin. 91, 33 (2000).Google Scholar
12. Nogami, M., Hayakawa, N., Sugioka, N., and Abe, Y., J. Am. Ceram. Soc. 79, 1257 (1996).Google Scholar
13. Jin, J., Sakida, S., Yoko, T., and Nogami, M., J. Non-Cryst. Sol. 262, 183 (2000).Google Scholar
14. Yoo, C. S., Radousky, H. B., Holmes, N. C. and Edelstein, N. M., Phys. Rev. B 44, 830 (1991).Google Scholar