Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:37:24.093Z Has data issue: false hasContentIssue false

High Pressure Raman Study of the Hydrolysis Reaction of Tmos and Teos

Published online by Cambridge University Press:  28 February 2011

G. Hoang
Affiliation:
Physics Department, Texas Christian University, Fort Worth, TX 76129
J. Watson
Affiliation:
Physics Department, Texas Christian University, Fort Worth, TX 76129
T. W. Zerda
Affiliation:
Physics Department, Texas Christian University, Fort Worth, TX 76129
Get access

Abstract

High pressure Raman spectroscopy is used to monitor the hydrolysis reaction of TMOS in solutions with methanol, acetonitrile, acetone, dioxane and formamide, and of TEOS as a function of pH and the catalyst used. The rate constants for various solvents, temperatures and pressures are experimentally determined from the time dependence of Raman band intensities. It is shown that the reaction is slow in dioxane and fast in methanol or formamide. The volume of activation is found from the pressure dependence of the rate constant. The volume of activation, the dielectric constant, dipole moments and hydrogen bonding properties and their role in the hydrolysis reaction are discussed. It is shown that solvents which can form hydrogen bonding with Si-OR groups can increase the rate of the reaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Davis, L. P. and Burggraf, L., in Science of Ceramic Chemical Processing, Eds. Hench, L. L. and Ulrich, D.R. (J. Wiley, New York, 1986)Google Scholar
2. Burggraf, L., Davis, L. P. and Gordon, M., J. Non-Crystal. Solids, in pressGoogle Scholar
3. Artaki, I., Zerda, T. W., Bradley, M. and Jonas, J., J. Phys. Chem. 89, 4399 (1985).Google Scholar
4. Grimmer, A. R., Rosenberger, H., Burger, H. and Volgel, W., J. Non-Crysrtal. Solids 99, 371 (1988).Google Scholar
5. Assink, R. A. and Key, B. D., J. Non-Cryst. Solids 99, 359 (1988)Google Scholar
6. Zerda, T. W. and Hoang, G., J. Non-Cryst. Solids 109, 9 (1989).Google Scholar
7. Hoang, G. and Zerda, T. W., Chem. Mat., submittedGoogle Scholar
8. McNeil, K. J., Dicaprio, J. A., Walsh, D. A. and Pratt, R. F., J. Am. Chem. Soc. 102, 1859 (1980).Google Scholar
9. Ro, J. C. and Chung, I. J., J. Non-Cryst. Solid 110, 26 (1989).Google Scholar
10. Pohl, E. R. and Osterholtz, F. D., in Molecular Characterization of Comtposite Interfaces, Eds. Ishida, H. and Kumar, G. (Plenum, New York 1985)Google Scholar
11. Kelm, H. and Palmer, D. A., High Pressure Chemistry, Ed. Kelm, H. (Reidel Publishing Company, Boston, 1978).Google Scholar
12. Orcel, G. and Hench, L. L., J. Non-Cryst. Solids 79, 177 (1986)Google Scholar
13. Aelion, R., Loebel, A. and Eirich, F., J. Am. Chem. Soc. 72, 5705 (1950)Google Scholar
14. Wynne-Jones, W. F. K. and Eyring, H., Ann. N. Y. Acad. Sci., 39, 492 (1935).Google Scholar
15. Moor, J. W. and Pearson, R. G., Kinetics and Mechanism, (J. Wiley, New York, 1981)Google Scholar
16. Dack, M. R. J., Chem. Soc. Rev., 4, 231 (1975)Google Scholar
17. Åkerlof, G. and Short, O. A., J. Am. Chem. Soc. 58, 1241 (1936).Google Scholar
18. Whalley, E., J. Chem. Phys., 38, 1400 (1963)Google Scholar
19. Corriu, R. J. P. and Young, J. C., in The Chemistry of Organic Silicon Compounds, Eds. Patai, S. and Rappoport, Z., (J. Wiley, New York, 1989)Google Scholar