Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T11:19:15.623Z Has data issue: false hasContentIssue false

High Pressure Optical Studies of GaSb-AlSb Multiple Quantum Wells

Published online by Cambridge University Press:  28 February 2011

Benjamin Rockwell
Affiliation:
Department of Physics, University of Missouri-Columbia, Columbia, MO 65211
H.R. Chandrasekhar
Affiliation:
Department of Physics, University of Missouri-Columbia, Columbia, MO 65211
Meera Chandrasekhar
Affiliation:
Department of Physics, University of Missouri-Columbia, Columbia, MO 65211
Fred H. Pollak
Affiliation:
Physics Department, Brooklyn College of CUNY, Brooklyn, N.Y. 11210
H. Shen
Affiliation:
Physics Department, Brooklyn College of CUNY, Brooklyn, N.Y. 11210
L.L. Chang
Affiliation:
IBM Thomas J.Watson Research Center, Yorktown Heights, N.Y. 10598-0218
W.I. Wang
Affiliation:
IBM Thomas J.Watson Research Center, Yorktown Heights, N.Y. 10598-0218
L. Esaki
Affiliation:
IBM Thomas J.Watson Research Center, Yorktown Heights, N.Y. 10598-0218
Get access

Abstract

The pressure coefficients (α) of the excitonic transitions arising from the conduction (CB) to the heavy (HH) and light (LH) hole sub-bands of a GaSb-AlSb multiple quantum well structure (MQW) grown on a GaAs substrate are determined. Photoreflectance (PR) and Photoluminescence (PL) studies are employed at cryogenic temperatures. The α for the ground sub-band transition is ~10% smaller than that for bulk GaSb. This effect is explained by in-plane deformation of the MQW arising from the substrate under external pressure. On the other hand, the α get progressively smaller for the higher sub-band transitions due to quantum confinement The PL intensity drops dramatically as the direct Γ CB crosses the L CB at ~10kBars but the PR intensity persists until the X CB crosses each sub-band energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 The band gap of GaSb corresponds to the wavelength range(l.5µm) of best performance of optical fibers.Google Scholar
2Shen, H., Hang, Z., Leng, Jing, Pollak, F.H., Chang, L.L., Wang, W.I. and Esaki, L., Superlattices and Microstructures 5, 591 (1989).Google Scholar
3Lefebvre, P., Gil, B., Allegre, J., Mathieu, H., Chen, Y. and Raisin, C., Phys.Rev. B35, 1230 (1987–II.)Google Scholar
4Voison, P., Delalande, C., Voos, M., Chang, L.L., Segmuller, A., Chang, C.A. and Esaki, L., Phys. Rev. B30, 2276 (1984).Google Scholar
5Griffiths, G., Mohammed, K., Subbanna, S., Kroemer, H. and Merz, J.L., Applied Physics Letters 43, 1059 (1983).Google Scholar
6Forchel, A., Cebulla, U., Trankle, G., Griffiths, G., Subbanna, S. and Kroemer, H., Surface Science 174, 143 (1986).Google Scholar
7Forchel, A., Cebulla, U., Trankle, G., Lach, E., Reinecke, T.L., Griffiths, G., Subbanna, S. and Kroemer, R., Phys.Rev.Letters, 57, 3217 (1986).Google Scholar
8Cebulla, U., Trankle, G., Ziem, U., Forchel, A., Griffiths, G., Kroemer, H.,and Subbanna, S., Phys.Rev. B37, 6778 (1988).Google Scholar
9Paul, W. and warschauer, D.M. in Solids under Pressure (McGraw Hill, New York, 1963); R.W. Keyes in Semiconductors and Semimetals, ed. by R.K. Willardson and A.C. Beers(Academic, New York, 1968), Vol 4, p327 ; G.D. Pitt, Contemp. Phys. 18,137(1977).Google Scholar
10 See for example Kangarlu, A., Chandrasekhar, H.R., Chandrasekhar, M., Kapoor, Y.M, Chambers, F.A., Vojak, B.A. and Meese, J.M., Phys.Rev. B38, 9790 (1988-I); ibid,Superlattices and Microstructures, 2, 563(1986); U. Venkateswaran, M. Chandrasekhar, H.R. Chandrasekhar, T. Wolfram, R. Fischer, W.R. Masselink and H. Morkoc, Phys.Rev.B31,4106(1985); U. Venkateswaran, M. Chandrasekhar, H.R. Chandrasekhar, B.A. Vojak, F.A. Chambers and J.M. Meese, Phys.Rev. B33, 8416(1986).Google Scholar
11Noack, R.A. and Holzapfel, W.B., Solid State Commun., 28, 177 (1978).Google Scholar
12Adachi, S., J.Appl.Phys. 58, R1 (1985).Google Scholar
13LeFebvre, P., Gil, B. and Mattieu, R., Phys.Rev. B35, 5630 (1987) ; D.Z.-Y. Ting and Y.C. Chang,Phys.Rev. B36, 4359(l987).Google Scholar
14Shay, J.L., Phys.Rev. 2, 803 (1970); O.J. Glembocki, B.V. Shanabrook, N. Bottka, W.T. Beard and J. Comas, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE, Bellingham, 1985) 524,86(1985); also, Appl.Phys.Letts. 46, 970(1985).Google Scholar
15Kangarlu, A., Ph.D. thesis, University of Missouri-Columbia, 1987 (unpublished). U.Venkateswaran, Ph.D. Thesis, University of Missouri-Columbia, 1985(Unpublished).Google Scholar
16Aspnes, D.E., Surface Science 37, 418 (1973).Google Scholar
17Glembocki, O.J. and Shanabrook, B.V., Superlattices and Microstructures 3, 235 (1987).Google Scholar
18Pollak, F.H. and Glembocki, O.J.,Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE, Bellingham, 1988) 946, 2 (1988).Google Scholar
19 Rigorously the PR lineshapes for isolated quantum wells is the first derivative of a Lorentzian or Gaussian profile as discussed in Ref.17.Google Scholar
20 The intensities of peaks in thePR spectra are also very sensitive to the built-in electric fields in the sample, the intensity and wavelength of the laser radiation which modulates these fields. Some anomalous intensity effects and strong parity forbidden transitions are often observedGoogle Scholar
21Bastard, G. and Brum, J.A., IEEE Journal of Quantum Electronics, QE–22, 1625 (1986).Google Scholar
22Gil, B., Dunstan, D.J., Calatayud, J., Mathieu, H. and Faurie, J.P., Phys. Rev. B40, 5522 (1989).Google Scholar
23Rockwell, Benjamin, Chandrasekhar, H.R., Chandrasekhar, M., Pollak, Fred H., Shen, H., Chang, L.L., wang, W.I. and Esaki, L., Surface Science (in print).Google Scholar