Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T02:25:17.744Z Has data issue: false hasContentIssue false

High Pressure Measurements on TI2Mn2O7

Published online by Cambridge University Press:  10 February 2011

M. Núñez-Regueiro
Affiliation:
Centre de Recherches sur les Très Basses Températures., C.N.R.S., BP166 cedex 09, 38042 Grenoble, France
R. Senis
Affiliation:
Centre de Recherches sur les Très Basses Températures., C.N.R.S., BP166 cedex 09, 38042 Grenoble, France
W. Cheikh-Rouhou
Affiliation:
Centre de Recherches sur les Très Basses Températures., C.N.R.S., BP166 cedex 09, 38042 Grenoble, France
P. Strobel
Affiliation:
Centre de Recherches sur les Très Basses Températures., C.N.R.S., BP166 cedex 09, 38042 Grenoble, France
P. Bordet
Affiliation:
Centre de Recherches sur les Très Basses Températures., C.N.R.S., BP166 cedex 09, 38042 Grenoble, France
M. Pernet
Affiliation:
Laboratoire de Cristallographie, C.N.R.S., BP166 cedex 09, 38042 Grenoble, France
M. Hanfland
Affiliation:
European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
B. Martinez
Affiliation:
Centre de Recherches sur les Très Basses Températures., C.N.R.S., BP166 cedex 09, 38042 Grenoble, France
J. Fontcuberta
Affiliation:
ICMAB-CSIC, Campus Universitat Autonoma de Barcelona, Bellaterra 08193, Spain
Get access

Abstract

Transport and structural properties of the colossal magnetoresistance pyrochlore TI2Mn2O7 are studied as a function of applied pressure up to ∼20GPa. This allows us to probe the effect of structural changes on the ferromagnetic transition and the transport properties. We observe a non-monotonous pressure dependence of the ferromagnetic transition temperature. We correlate this unusual variation with the structural parameters that, according to electronic band calculations, are key in controlling the properties of these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zener, C., Phys. Rev. 82, 403(1951)Google Scholar
2. Millis, A.J., Littlewood, P.B. and Shraiman, B.I., Phys. Rev. Lett. 74, 5144 (1995);Google Scholar
Roëder, H., Zhang, J. and Bishop, A.R., Phys. Rev. Lett. 76, 1356 (1996)Google Scholar
3. Subramanian, M.A., Aravamudan, G. and Subba Rao, G.V., Prog. Solid St. Chem. 15, 55 (1983);Google Scholar
Shimakawa, Y., Kubo, Y. and Manako, T., Nature 379, 53 (1996)Google Scholar
4. Subramanian, M.A., Toby, B.H., Ramirez, A.P., Marshall, W.J., Sleight, A.W. and Kwei, G.H., Science 273, 81 (1996);Google Scholar
Lynn, J.W., Vasiliu-Doloc, L. and Subramanian, M.A., Phys. Rev. Lett. 80, 4582 (1998)Google Scholar
5. Fischer, M.E. and Langer, J.S., Phys. Rev. Lett. 20, 665 (1968)Google Scholar
6. Majumdar, P. and Littlewood, P., Phys. Rev. Lett. 81, 1314 (1998);Google Scholar
Nature 395, 479 (1998)Google Scholar
7. Martínez, B., Senis, R., Fontcuberta, J., Obradors, X., Cheikh-Rouhou, W., Strobel, P, Bougerol-Chaillout, C. and Pernet, M., Phys. Rev. Lett. 83, 2022 (1999)Google Scholar
8. See for example Núñez-Regueiro, M. and Acha, C.Studies of High Temperature Superconductors”, 24, 203, edited by Narlikar, A., Nova science New York (1997) and references therein.Google Scholar
9. Mao, H.K., Xu, J. and Bell, P.M., Geophys, J.. Res. 91, 4673 (1986).Google Scholar
10. Hammersley, A.P. et al. High Pressure Research 14, 235 (1996).Google Scholar
11. Hwang, H.Y. and Cheong, S-W., Nature 389, 942 (1997)Google Scholar
12. Goodenough, J.B., Phys. Rev. 100, 564 (1955)Google Scholar
13. Sushko, Yu.V.; Kubo, Y; Shimakawa, Y. and Manako, T., Physica. B259-261, 831 (1999)Google Scholar
14. Mishra, S.K. and Satpathy, S., Phys. Rev. B58, 7585 (1998)Google Scholar