Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:18:37.206Z Has data issue: false hasContentIssue false

High Performance Quasi-Solid Dye-Sensitized Solar Cells with Nano Clay Electrolyte

Published online by Cambridge University Press:  31 January 2011

Tomoyuki Inoue
Affiliation:
[email protected], The University of Tokyo, Research Center for Advanced Science and Technology (RCAST), Tokyo, Japan
Satoshi Uchida
Affiliation:
[email protected], The University of Tokyo, Research Center for Advanced Science and Technology (RCAST), Tokyo, Japan
Takaya Kubo
Affiliation:
[email protected], The University of Tokyo, Research Center for Advanced Science and Technology (RCAST), Tokyo, Japan
Hiroshi Segawa
Affiliation:
[email protected], The University of Tokyo, Research Center for Advanced Science and Technology (RCAST), Tokyo, Japan
Get access

Abstract

The artificial nano-clay powder was newly examined as a gelator of electrolyte of quasi-solid-state dye-sensitized solar cell (DSSC). The size of clay has two main distributions with 1.4 nm and 20 nm in diameter which are confirmed by STEM observation. The gelation point was determined by using Rheometer. The gel state maintained with more than 5wt% nano-clay in the acetonitrile based solvent. The quasi-solid-state DSSC with nano-clay electrolyte (10 wt%) was successfully showed a high photoelectric conversion efficiency of 10.3%, which is equivalent to that using a liquid electrolyte.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 O'Regan, B., Grätzel, M., Nature, 353, 737740 (1991).Google Scholar
2 Grätzel, M., Nature, 414, 338344 (2001).Google Scholar
3 Matsumoto, M. Wada, Y. Kitamura, T. Shigaki, K. Inoue, T. Ikeda, M. Yanagida, S. Bull. Chem. Soc. Jpn., 74, 387393 (2001).Google Scholar
4 Kubo, W. Makimoto, Y. Kitamura, T. Wada, Y. , Yuji and Yanagida, S. Chem. Lett., 9, 948949 (2002).Google Scholar
5 Han, L. Komiya, R. Yamanaka, R. and Mitate, T. Proceeding of 14th. International Conference on Photochemical Conversion and Storage of Solar Energy, Sapporo, 2002. W1–O.Google Scholar
6 Stathatos, E. Lianos, P. Zakeeruddin, S. M. Liska, P. Grätzel, M., Chem. Mater., 15, 18251829 (2003).Google Scholar
7 Wang, P. Zakeeruddin, S. M. Comte, P. Exnar, I. Grätzel, M., J. Am. Chem. Soc., 125, 11661167 (2003).Google Scholar
8 Usui, H. Matsui, H. Tanabe, N. Yanagida, S. J. Photochem. Photobiol. A, 164, 97101 (2004).Google Scholar
9 Maruyama, T. Sekine, Y. Konno, A. ECSJ Autumn Meeting, 1E35 (2005).Google Scholar
10 Maruyama, T. Sekine, Y. Patent publication, JP2007-531206 (2007).Google Scholar
11 Tu, C.-W. Liu, K.-Y. Chien, A.-T. Yen, M.-H. Weng, T. H. Ho, K.-C. Lin, K.-F. J. Poly. Science, 46(1), 4753 (2008).Google Scholar
12 Ito, B. I. Freitas, J. N. Paoli, M.-A. and Nogueira, A. F. J. Braz. Chem.Soc., 19(4), 688696 (2008).Google Scholar
13 Park, J. H. Kim, B-W. and Moon, J. H. Electrochem. Solid St., 11(10), B171173 (2008).Google Scholar
14 Inoue, T. Uchida, S. Kubo, T. and Segawa, H. ECSJ Autumn Meeting, Kyoto, 2A08 (2009).Google Scholar
15 Torii, K. Onodera, Y. Iwasaki, T. Shirai, M. Arai, M. andNishiyama, Y. J. Porous Mat., 4, 261268 (1997).Google Scholar