Published online by Cambridge University Press: 01 February 2011
Dangling bond defects (DB) in hydrogenated microcrystalline silicon (μc-Si:H) have been studied by X-band (9 GHz) Q-band (33 GHz) and W-band (90 GHz) electron spin resonance (ESR) spectroscopy. In X-band ESR spectra, all the samples showed asymmetric dangling bond defect signal at g = 2.005 – 2.006. The DB signal shape shows little dependence on substrate temperature in the X-band electron spin resonance (ESR) spectra. In the Q-band and W-band ESR spectra, existence of two centers in DB signals is clearly indicated by the shape of the spectra. The Q-band ESR spectra shape reviles that the peak of one center is at g = 2.0055andthe other is around at g = 2.0060. In addition, the DB signal showed dependence on substrate temperature. The dependence of the DB signals can be explained by difference of intensity ratio of the peaks by these two centers. The signal at g = 2.0060 is consistent with the asymmetric ESR signal observed in the microcrystalline silicon embedded in SiO2. W-band ESR measurement indicates that the signal observed at g = 2.0060 is due to single inhomogeneous species and does not consist of plural species.