Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:51:42.742Z Has data issue: false hasContentIssue false

High Field Limitation of Poole-Frenkel Emission Caused by Tunneling

Published online by Cambridge University Press:  10 February 2011

S. D. Ganichev
Affiliation:
Institut für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040 Regensburg, Germany, e-mail: [email protected] A. F. loffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
E. Ziemann
Affiliation:
Institut für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040 Regensburg, Germany, e-mail: [email protected]
W. Prettl
Affiliation:
Institut für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040 Regensburg, Germany, e-mail: [email protected]
A. A. Istratov
Affiliation:
Dept. of Materials Science, University of California, Berkeley CA 94720
E. R. Weber
Affiliation:
Dept. of Materials Science, University of California, Berkeley CA 94720
Get access

Abstract

The electric field dependence of emission of carriers from deep impurities in semiconductors has been investigated applying static and terahertz electric fields. It is shown that at high electric field strengths carrier emission is dominated by phonon assisted tunneling which may easily be recognized by plotting the emission rate as a function of the square of the electric field strength in a log-lin plot giving a straight line. For charged impurities the transition from phonon assisted tunneling to Poole-Frenkel effect at low fields can be traced back.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Zaidi, M.A., Bourgoin, J.C. and Maaref, H., Semicond. Sci. Technol. 4, 739 (1989).Google Scholar
[2] Tasch, A.F. Jr., and Sah, C.T., Phys. Rev. B 1, 800 (1970)Google Scholar
[3] Wang, K.L. and Li, G.P., Sol. State Comm. 47, 233 (1983).Google Scholar
[4] Baber, N., Scheffler, H., Ostmann, A., Wolf, T., and Bimberg, D., Phys. Rev. B 45, 4043 (1992).Google Scholar
[5] Irmscher, K., Klose, H. and Maass, K., Phys. Stat. Sol. A 75, K25 (1983).Google Scholar
[6] Vincent, G., Chantre, A., and Bois, D., J. Appl. Phys. 50, 5484 (1979).Google Scholar
[7] Auret, F.D., Goodman, S.A. and Meyer, W.E., Semicond. Sci. Technol. 10, 1376 (1995).Google Scholar
[8] Ilie, A. and Equer, B., Phys. Rev. B 57, 15349 (1998).Google Scholar
[9] Istratov, A.A., Hieslmair, H., Heiser, T., Flink, C. and Weber, E.R., Appl. Phys. Lett. 72, 474 (1998).Google Scholar
[10] Makram-Ebeid, S. and Lannoo, M., Phys. Rev. B 25, 6406 (1982)Google Scholar
[11] Karpus, V. and Perel, V.I., Zh. Eksp. Teor. Fiz. 91, 2319 (1986) [Sov. Phys. JETP 64, 1376 (1986)].Google Scholar
[12] Ganichev, S.D., Prettl, W. and Yassievich, I.N., Phys. Solid State 39, 1703 (1997)Google Scholar
[13] Ganichev, S.D., Ziemann, E., Gleim, Th., Prettl, W., Yassievich, I.N., Perel, V.I., Wilke, I., and Haller, E.E., Phys. Rev. Lett. 80, 2409 (1998).Google Scholar
[14] Abakumov, V.N, Karpus, V., Perel', V.I. and Yassievich, I.N., Sov. Phys. Semicond. 22, 159 (1988)Google Scholar