Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:43:36.804Z Has data issue: false hasContentIssue false

High Electron Mobility TFTs of Nanocrystalline Silicon Deposited at 150°oC on Plastic Foil

Published online by Cambridge University Press:  17 March 2011

I-Chun Cheng
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, U.S.A.
Sigurd Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, U.S.A.
Sanghoon Bae
Affiliation:
Nanofabrication Facility, Pennsylvania State University, University Park, PA 16802, U.S.A.
Stephen J. Fonash
Affiliation:
Nanofabrication Facility, Pennsylvania State University, University Park, PA 16802, U.S.A.
Get access

Abstract

Top gate n-channel thin film transistors (TFTs) of nanocrystalline silicon (nc-Si:H) were fabricated on Kapton polyimide film substrates at a maximum process temperature of 15°C. These are thefirst nc-Si:H TFTs ever made on a plastic substrate. Both intrinsic and n+ source/drain layers were directly deposited at 80 MHz excitation frequency for high growth rate. Coplanar TFTs with top source/drains and staggered TFTs with bottom source/drains were made. The coplanar top gate and top source/drain structures have linear electron mobility of ∼ 30 cm2V-1s-1 and ON/OFF ratio up to ∼ 105. TFTs with the top gate and bottom source/drain structure made to date have linear mobility of up to ∼ 12 cm2V-1s-1 and ON/OFF ratio of ∼105.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hsu, P. I., Huang, M., Wagner, S., Suo, Z. and Sturm, J. C., Mater. Res. Soc. Symp. Proc. 621, Q8.6 (1999).Google Scholar
2. Gleskova, H., Wagner, S., and Suo, Z., Mater. Res. Soc. Symp. Proc. 508, 73 ((1998).Google Scholar
3. Gleskova, H. and Wagner, S., IEEE Electron Dev. Lett., Vol. 20, No.9,473 ((1999).Google Scholar
4. Sazonov, A. and Nathan, A., J. Vac. Sci. Technol. A 18 (2), 780 (2000).Google Scholar
5. Yang, C. S., Smith, L. L., Arthur, C. V., and Parsons, G. N., J. Vac. Sci. Technol. B 18 (2), 683 (2000).Google Scholar
6. Smith, P.M., Carey, P.G., and Sigmon, T.W., Appl. Phys. Lett., 70 (3), 342 (1997).Google Scholar
7. Carey, P. G., Smith, P. M., Theiss, S. D. and Wickboldt, P., J. Vac. Sci. Technol. A 17 (4), 1946 (1999).Google Scholar
8. Gosain, D. P., Noguchi, T., and Usui, S., Japanese J. of Appl. Phys., Part 2: Letters, Vol. 39, 3AB, 179 (2000).Google Scholar
9. Chen, Y. and Wagner, S., Appl. Phys. Lett., 75, 1125 ((1999).Google Scholar
10. Mulato, M., Chen, Y., Wagner, S. and Zanatta, A. R., J.Non-Cryst. Solids, Vol. 266–269, 1260 ((2000).10.1016/S0022-3093(99)00934-5Google Scholar
11. Cheng, I. C., Wagner, S. and Mulato, M., Mater. Res. Soc Symp. Proc. 609, A31.2 (2000).Google Scholar
12. Kocka, J., Stuchlikova, H., Stuchlik, J., Rezek, B., Svrcek, V., Fojtik, P., Pelant, I. and Fejfar, A., Mater. Res. Soc. Symp. Proc. 557, 483 ((1999).Google Scholar
13. Svrcek, V., Pelant, I., Kocka, J., Fojtik, P., Rezek, B., Stuchlikova, H., Fejfar, A., Stuchlik, J., and Poruba, A., J. Appl. Phys., 89, 1800 ((2001).Google Scholar
14. Finger, F., Hapke, P., Luysberg, M., Carius, R. and Wagner, H., Appl. Phys. Lett., 65 (20), 2588 (1994).Google Scholar
15. Tzolov, M., Finger, F., Carius, R. and Hapke, P., J. Appl. Phys., 81 (11), 7376 (1997).10.1063/1.365354Google Scholar
16. Vallat-Sauvain, E., Kroll, U. and Shah, A., J. of Appl. Phys., 87, 3137 ((2000).Google Scholar
17. Mulato, M., Wagner, S. and Zanatta, A. R., J. Electrochem. Soc., 147, 1829 ((2000).Google Scholar
18. Min, R. and Wagner, S., MRS Spring 2001 Meeting, paper A17.5.Google Scholar
19. Platz, R. and Wagner, S., Appl. Phys. Lett., 73, 1236 ((1998).Google Scholar
20. Koh, J., Ferlauto, A. S., Rovira, P. I., Wronski, C. R., and Collins, R. W., Appl. Phys. Lett., 75, 2286 (1999).Google Scholar
21. Cabarrocas, P. Roca i, Layadi, N., Heitz, T., Drevillon, B. and Solomon, I., Appl. Phys. Lett., 66, 3609 ((1995).Google Scholar