Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-20T00:01:20.831Z Has data issue: false hasContentIssue false

A High Efficiency, Purcell-enhanced Microcavity Single Photon Emitting Diode

Published online by Cambridge University Press:  31 January 2011

David J.P. Ellis
Affiliation:
[email protected], Toshiba Research Europe Ltd, Cambridge, United Kingdom
Anthony J. Bennett
Affiliation:
[email protected], Toshiba Research Europe Ltd, Cambridge, United Kingdom
Samuel J. Dewhurst
Affiliation:
[email protected], University of Cambridge, Cavendish Laboratory, Cambridge, United Kingdom
Christine A. Nicoll
Affiliation:
[email protected], University of Cambridge, Cavendish Laboratory, Cambridge, United Kingdom
David A. Ritchie
Affiliation:
[email protected], University of Cambridge, Cavendish Laboratory, Cambridge, United Kingdom
Andrew J. Shields
Affiliation:
[email protected], Toshiba Research Europe Ltd, Cambridge, United Kingdom
Get access

Abstract

Efficient, high-frequency quantum light sources are a prerequisite for advanced quantum information processing. Here, we report the observation of a Purcell enhancement in the radiative decay rate of a single quantum dot, embedded in a microcavity light-emitting diode structure. An annulus of low-refractive-index aluminium oxide, formed by wet oxidation, is used to simultaneously achieve lateral confinement of both the optical mode and the current through the device. This technique reduces the active area of the device without impeding the electrical properties of the p-i-n diode. We measure a photon collection efficiency of 14 ± 1% and demonstrate single photon electroluminescence at repetition rates up to 0.5 GHz.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Shields, A. J., Nat Photonics 1, 215223 (2007).Google Scholar
2 Yuan, Z. L., Kardynal, B. E., Stevenson, R. M., Shields, A. J., Lobo, C. J., Cooper, K., Beattie, N. S., Ritchie, D. A. and Pepper, M., Science 295, 102 (2002).Google Scholar
3 Bennett, A. J. et al, Phys. Stat. Sol. (b) 243, 3730 (2006).Google Scholar
4 Vahala, K. J., Nature 424, 839846 (2003).Google Scholar
5 Santori, C., Fattal, D., Vučković, J., Solomon, G., and Yamamoto, Y., Nature 419, 594 (2002).Google Scholar
6 Ellis, D. J. P., Bennett, A. J., Dewhurst, S. J., Nicoll, C. A., Ritchie, D. A. and Shields, A. J., New J. Phys. 10 043035 (2008).Google Scholar
7 Ellis, D. J. P., Bennett, A. J., Shields, A. J., Atkinson, P. and Ritchie, D. A., Appl. Phys. Lett. 2006 88 133509 (2006).Google Scholar