No CrossRef data available.
Article contents
High Dose Ion Implantation for the Synthesis of Si1−xGex Alloys
Published online by Cambridge University Press: 26 February 2011
Abstract
High dose ion implantation followed by solid phase epitaxy has been investigated for use in the synthesis of defect-free graded alloys of Si1−xGex. Two implanted alloy systems were studied: (i) 200 keV 74Ge into <001> Si to form Si-rich alloys and (ii) 150 keV 29Si into <001> Ge to form Ge-rich alloys. After regrowth by solid phase epitaxy the Ge-rich alloys are strained in tension while the Si-rich alloys are in compression and, as a result, strain relaxation is anticipated above a critical dose. We report that solid phase epitaxy at 550°C following implantation of Si into <001> Ge at an energy of 150 keV allowed the defect-free regrowth of alloys with peak concentrations of 11 ± 2 at. % Si (fluence of 7.7 × l016/cm2). Ge was implanted at 200 keV into <001> Si to a peak concentration of 7 at. % (fluence of 3.6 × l016/cm2) and was regrown without the introduction of defects whereas samples implanted to a peak concentration of 13 at. % (fluence of 5.3 × l016/cm2) contained a high density of stacking faults. These experimental observations are compared to theoretical predictions that are based on the strain energy approach.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1991