Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:35:45.744Z Has data issue: false hasContentIssue false

High Concentration Aqueous Mixtures of Single Walled Nanotubes

Published online by Cambridge University Press:  15 February 2011

Jaime C. Grunlan
Affiliation:
Avery Research Center, Avery Dennison Corporation, 2900 Bradley Street, Pasadena, CA 91107-1599, U.S.A.
Michael V. Bannon
Affiliation:
Avery Research Center, Avery Dennison Corporation, 2900 Bradley Street, Pasadena, CA 91107-1599, U.S.A.
Get access

Abstract

Gum arabic (GA) and polyvinylpyrrolidone (PVP) were used to stabilize relatively high concentration mixtures of single walled carbon nanotubes (SWNTs) in water. Viscosity and electrical conductivity data, along with electron microscopy, suggest that PVP interacts much more strongly with nanotubes than GA does. This strong PVP-SWNT relationship results in better dispersion of the nanotubes, resulting in lower electrical conductivity, but may enhance mechanical behavior in polymer-matrix composites.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ajayan, P. M., Chem. Rev., 99, 1787 (1999)Google Scholar
2. Connell, M. J. O., Boul, P., Ericson, L. M., Huffman, C., Wang, Y., Haroz, E., Kuper, C., Tour, J., Ausman, K. D., and Smalley, R. E., Chem. Phys. Lett., 342, 265 (2001)Google Scholar
3. Bandyopadhyaya, R., Nativ-Roth, E., Regev, O., and Yerushalmi-Rozen, R., Nano Lett., 2, 25 (2002)Google Scholar
4. Pompeo, F. and Resasco, D. E., Nano Lett., 2, 369 (2002)Google Scholar
5. Biercuk, M. J., Llaguno, M. C., Radosavljevic, M., Hyun, J. K., Johnson, A. T., and Fischer, J. E., Appl. Phys. Lett., 80, 2767 (2002)Google Scholar
6. Vivien, L., Anglaret, E., Riehl, D., Bacou, F., Journet, C., Goze, C., Andrieux, M., Brunet, M., Lafonta, F., Bernier, P., Hache, F., Chem. Phys. Lett., 307, 317 (1999)Google Scholar
7. Landi, B. J., Raffaelle, R. P., Heben, M. J., Alleman, J. L., VanDerveer, W., and Gennett, T., Nano Lett., 2, 1329 (2002)Google Scholar
8. Chen, J., Hamon, M. A., Hui, H., Chen, Y., Rao, A. M., Eklund, P. C., and Haddon, R. C., Science, 282, 95 (1998)Google Scholar
9. Star, A., Steuerman, D. W., Heath, J. R., and Stoddart, J. F., Angew. Chem. Int. Ed., 41, 2508 (2002)Google Scholar
10. Nikolaev, P., Bronikowski, M. J., Bradley, R. K., Rohmund, F., Colbert, D. T., Smith, K. A., and Smalley, R. E., Chem. Phys. Lett., 313, 91 (1999)Google Scholar
11. Wald, G. Von and Langhorst, M., “Viscometry as a Detection Scheme for Particles in Separation Techniques for Size Distribution Analysis”, Particle Size Distribution II, ed. Provder, T. (Am. Chem. Soc., 1991), pp. 308323.Google Scholar
12. Grunlan, J. C., Bloom, F. L., Gerberich, W. W., and Francis, L. F., J. Mater. Sci. Lett., 20, 1523 (2001)Google Scholar