Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:19:57.080Z Has data issue: false hasContentIssue false

Hierarchically Porous Oxides, Hybrids and Polymers via Sol-gel Accompanied by Phase Separation

Published online by Cambridge University Press:  17 March 2011

Kazuki Nakanishi*
Affiliation:
Graduate School of Science, Dept. Chemistry, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto, 6068502, Japan
Get access

Abstract

In various crosslinking systems containing metal oxides, organo-siloxane polymers and pure hydrocarbons, monolithic materials with hierarchical well-defined macropores and controlled mesopores have been synthesized. Synthetic progress in alkoxy-derived macroporous silica lead to the preparation of long-range ordered mesoporous skeletons in well-defined macroporous framework. Alkylene-bridged silicon alkoxides can also be prepared into similarly hierarchical porous structures with broadened variations in framework morphology. Macro-mesoporous alkoxy-derived pure titania and zirconia have been prepared using hydrochloric acid – mediated processes. Compared with those prepared from colloidal dispersions, alkoxy-derived macroporous titania exhibited much higher mechanical strength. Titania monolith is a promising candidate as a separation medium to discriminate phosphorylated compounds in a liquid chromatography mode. Pure alumina macroporous monolith has been first synthesized from aluminum salt using propylene glycol as a proton scavenger to thrust the solution pH from acidic into neutral conditions. Alumina-based complex oxides such as garnets and spinels can also be prepared in pure phases. Polymerization and phase separation in organic crosslinker system was also controlled to obtain well-defined co-continuous macro-frameworks instead of those composed of aggregated particles. These examples demonstrate the versatility of using phase-separation in gelling systems to obtain well-defined macroporous structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nakanishi, K. and Soga, N. , N, J. Am. Ceram. Soc., 74, 25182530 (1991).Google Scholar
2 Nakanishi, K. and Soga, N., J. Non-Cryst. Solids, 139, 113 (1992).Google Scholar
3 Nordberg, M.E., J. Am. Ceram. Soc., 27, 299304 (1944).Google Scholar
4 Kaji, H., Nakanishi, K. and Soga, N., J. Sol-Gel Sci. Technol., 1, 3546 (1993).Google Scholar
5 Nakanishi, K., J. Porous Mater,. 4, 67112 (1997).Google Scholar
6 Konishi, J., Fujita, K., Nakanishi, K. and Hirao, K., Chem. Mater., 18, 60696074 (2006).Google Scholar
7 Konishi, J., Fujita, K., Nakanishi, K. and Hirao, K., Chem. Mater., 18, 864866 (2006).Google Scholar
8 Nakanishi, K., Bull. Chem. Soc. Jpn. (Account), 79, 673691 (2006).Google Scholar
9a) Tanaka, N., Kobayashi, H., Nakanishi, K., Minakuchi, H. and Ishizuka, N., Anal. Chem., 73, 420A429A (2001). b) H. Minakuchi, K. Nakanishi, N. Soga, N. Ishizuka and N. Tanaka, Anal. Chem., 68, 3498-3501 (1996).Google Scholar
10 Nakanishi, K., Takahashi, R., Nagakane, T., Kitayama, K., Koheiya, N., Shikata, H. and Soga, N., J. Sol-Gel Sci. Technol., 17, 191210 (2000).Google Scholar
11 Nakanishi, K., Nagakane, T. and Soga, N., J. Porous Mater., 5, 103110 (1998).Google Scholar
12 Sato, Y., Nakanishi, K., Hirao, K., Jinnai, H., Shibayama, M., Melnichenko, Y.B. and Wignall, G.D., Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187/188, 117122 (2001).Google Scholar
13 Nakanishi, K., Sato, Y., Ruyat, Y. and Hirao, K., J. Sol-Gel Sci. Technol., 26, 567570 (2003).Google Scholar
14 Nakanishi, K., Mat. Res. Soc. Symp. Proc., 788 (2004), pp. L7.5.110.Google Scholar
15 Amatani, T., Nakanishi, K., Hirao, K. and Kodaira, T., Chem. Mater., 17, 21142119 (2005).Google Scholar
16 Hüsing, N., Raab, C., Torma, V., Roig, A., Peterlik, H., Chem. Mater., 15, 26902691 (2003).Google Scholar
17 Brandhuber, D., Peterlink, H., Hüsing, N., Small, 2, 503506 (2005).Google Scholar
18 Nakanishi, K. and Kanamori, K., J. Mater. Chem., 15, 37763786 (2005).Google Scholar
19 Nakanishi, K., Yamato, T. and Hirao, K., Mat. Res. Soc. Symp. Proc. Vol. 726, 2002, Q9.7.110 Google Scholar
20 Nakanishi, K., Kobayashi, Y., Amatani, T., Hirao, K. and Kodaira, T., Chem. Mater., 16, 36523658 (2004).Google Scholar
21 Backlund, S., Smått, J.-H., Rosenholm, J. B., Lindén, M., J. Disp. Sci. Technol., 28, 15 (2007).Google Scholar
22 Gash, A. E., Tillotson, T. M., Satcher, J. H. Jr, Poco, J. F., Hrubesh, L. W., Simpson, R. L., Chem. Mater., 13, 9991007 (2001).Google Scholar
23 Tokudome, Y., Fujita, K., Hirao, K. and Nakanishi, K., Chem. Mater., 19, 33933398 (2007).Google Scholar
24 Tokudome, Y., Fujita, K., Nakanishi, K., Kanamori, K., Miura, K., Hirao, K. and Hanada, T., J. Ceram. Soc. Jpn, 115, 925928 (2007).Google Scholar
25 Kanamori, K., Nakanishi, K., Hanada, H., Adv. Mater., 18, 24072411 (2006).Google Scholar