Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-04T21:35:51.216Z Has data issue: false hasContentIssue false

Hierarchical Structure of Porosity in Cortical and Trabecular Bones

Published online by Cambridge University Press:  16 March 2012

Ekaterina Novitskaya
Affiliation:
University of California, San Diego, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093, USA
Elham Hamed
Affiliation:
University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, 1206 West Green Street, Urbana, IL 61801, USA
Jun Li
Affiliation:
University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, 1206 West Green Street, Urbana, IL 61801, USA
Zherrina Manilay
Affiliation:
University of California, San Diego, Department of Mechanical and Aerospace Engineering, 9500 Gilman Dr., La Jolla, CA 92093, USA
Iwona Jasiuk
Affiliation:
University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, 1206 West Green Street, Urbana, IL 61801, USA
Joanna McKittrick
Affiliation:
University of California, San Diego, Materials Science and Engineering Program, 9500 Gilman Dr., La Jolla, CA 92093, USA University of California, San Diego, Department of Mechanical and Aerospace Engineering, 9500 Gilman Dr., La Jolla, CA 92093, USA
Get access

Abstract

In this paper the amount and morphology of cortical and trabecular bone porosities were estimated using optical microscopy and micro-computed tomography technique. The hierarchical structure of porosity at different structural scales spanning from a single lacuna (sub-microscale) to trabecular or cortical bone levels (mesoscale) was characterized and described. This study was conducted by using samples of untreated, deproteinized and demineralized bones, to obtain better insight into the bone structure and porosities. The motivation of this work is that the porosity in bone has a major effect on its mechanical response, yet it is often neglected in bone models. Investigations of the mechanical properties of bone and its main components (collagen and mineral phases), complemented by modeling, are of importance in orthopedics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Olszta, M.J., Cheng, X., Jee, S.S., Kuman, R., Kim, Y.-Y., Kaufman, M.J., Doublas, E.P., Gower, L.B., Mater. Sci. Eng. R 58, 77116 (2007).Google Scholar
2. Wachter, N.J., Krischak, G.D., Mentzel, M., Sarkar, M.R., Ebinger, T., Kinzl, L., Claes, L., Augat, P., Bone 31, 9095 (2002).Google Scholar
3. Dong, X.N., Guo, X.E., J. Biomech. 37, 12811297 (2004).Google Scholar
4. Basillais, A., Bensamoun, S., Chappard, C., Brunet-Imbault, B., Lemineur, G., Ilharreborde, B., Ho Ba Tho, M.-C., Benhamou, C.-L., J. Orthop. Sci. 12, 141148 (2007).Google Scholar
5. Wachter, N.J., Augat, P., Krischak, G.D., Mentzel, M., Kinzl, L., Claes, L., Calcif. Tissue. Int. 68, 3842 (2001).Google Scholar
6. Cooper, D.M.L., Turinsky, A.L., Sensen, C.W., Hallgrimsson, B., Anatomical Record 274B, 169179 (2003).Google Scholar
7. Schneider, P., Stauber, M., Voide, R., Stampanoni, M., Donahue, L.R., Müller, R., J. Bone Mineral Res. 22, 15571570 (2007).Google Scholar
8. Van Rietbergen, B., Odgaard, A., Kabel, J., Huiskes, R., J. Orthop. Res. 16, 2328 (1998).Google Scholar
9. Fajardol, R.J., Muller, R., Am. J. Phys. Anthropol. 115, 327336 (2001).Google Scholar
10. Patel, V., Issever, A.S., Burghardt, A., Laib, A., Ries, M., Majumdar, S., J. Orthop. Res. 21, 2126 (2003).Google Scholar
11. Hellmich, C., Barthelemy, J.F., Dormieux, L., European J. of Mechanics a-Solids. 23, 783810, (2004).Google Scholar
12. Fritsch, , Hellmich, C., J. Theor. Biol. 244, 597620 (2007).Google Scholar
13. Nikolov, S., Raabe, D., Biophys. J. 94, 42204232 (2008).Google Scholar
14. Yoon, Y.J., Cowin, S.C., Biomech. Model. Mechanobiol. 7, 111 (2008).Google Scholar
15. Hamed, E., Lee, Y., Jasiuk, I., Acta Mech. 213, 131154 (2010).Google Scholar
16. Hamed, E., Jasiuk, I., Yoo, A., Lee, Y., Liszka, T., J. Roy. Soc. Interface, in press (2012).Google Scholar
17. Hamed, E., Novitskaya, E., Li, J., Chen, P.-Y., Jasiuk, I., McKittrick, J., Acta Biomater. in press (2011).Google Scholar
18. Toroian, D., Lim, J.L., Price, P.A., J. Biol. Chem. 282, 22437–22284, (2007).Google Scholar
19. Chen, P.-Y., Toroian, D., Price, P.A., McKittrick, J., Calcif. Tiss. Inter. 88, 351361 (2011).Google Scholar
20. Gibson, L.J., Ashby, M.F., “Cellular Solids: Structure and Properties” (Cambridge University Press, 1999) pp. 316-331.Google Scholar