Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-06T01:12:48.309Z Has data issue: false hasContentIssue false

Hierarchical nanomechanics of vimentin alpha helical coiled-coil proteins

Published online by Cambridge University Press:  26 February 2011

Theodor Ackbarow
Affiliation:
[email protected], MIT, Civil and Environmental Engrg, 77 Mass Ave, Cambridge, MA, 02139, United States, 626 628 4087
Markus J. Buehler
Affiliation:
[email protected], Massachusetts Institute of Technology, Civil and Environmental Engineering, 77 Massachusetts Ave, Cambridge, MA, 02139, United States
Get access

Abstract

Coiled-coil alpha-helical dimers are the elementary building blocks of intermediate filaments (IFs), an important component of the cell's cytoskeleton. Therefore, IFs play a leading role in the mechanical integrity of the cells. Here we use atomistic simulation to carry out tensile tests on coiled-coils as well as on single alpha-helices of the 2B segment of the vimentin dimer that has been shown to control the large-deformation behavior of cells. We compare the characteristic force-strain curves of both structures and suggest explanations for the differences on this fundamental level of hierarchical assembly. We further systematically explore the strain rate dependence of the mechanical properties of the vimentin coiled-coil protein. We develop a simple continuum model capable of reproducing the atomistic modeling results. The model enables us to extrapolate to much lower deformation rates approaching those used in experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alberts, B., Molecular Biology of the Cell, 2002: Taylor & Francis Google Scholar
2. Wang, N., Stamenovic, D., Mechanics of Vimentin intermediate filaments. J. Muscle Research and Cell Motility, 2003. 23: p. 535540 Google Scholar
3. Mücke, N., Kreplak, L., Kirmse, R., Wedig, T., Herrmann, H., Aebi, U., Langowski, J., Assessing the Flexibility of Intermediate Filaments by Atomic Force Microscopy. J. Mol. Biol., 2004. 355: p. 23422350 Google Scholar
4. Helfand, B. T., Chang, L., Goldman, R. D., Intermediate filaments are dynamic and motile elements of cellular architecture. J. of Cell Science, 2004. 117: p. 133141 10.1242/jcs.00936Google Scholar
5. Herrmann, H., Aebi, U., Intermediate Filaments: Molecular Structure, Assembly Mechanism, and Integration into Functionally distinct Intracellular Scaffolds. Annu. Rev. Biochem.,Google Scholar
2004. 73: p. 749789 Google Scholar
6. Janmey, P. A., Euteneuer, U., Traub, P., Schliwa, M., Viscoelastic Properties of Vimentin Compared with Other Filamentous Biopolymer Networks. J. of Cell Biology, 1991. 113: p-155160 Google Scholar
7. Strelkov, S. V., Herrmann, H., Aebi, U., Molecular architecture of intermediate filaments. BioEssays, 2003. 25: p. 243251 Google Scholar
8. Mücke, N., Wedig, T., Bürer, A., Marekov, L., Steinert, P., Langowski, J., Aebi, U., Herrmann, H., Molecular and Biophysical Characterization of Assembly-Starter Units of Human Vimentin. J. Mol. Biol. 2004. 340: p. 97114 Google Scholar
9. Kiss, B., Karsai, A., Kellermayer, M.S.Z., Nanomechanical properties of desmin intermediate filaments. J. of Structural Biology, 2006. 155: p. 327339 Google Scholar
10. Kreplak, L., Bär, H., Leterrier, J.F., Herrmann, H., Aebi, U., Exploring the Mechanical Behavior of Single Intermediate Filaments. J. Mol. Biol., 2005. 354: p. 569577 Google Scholar
11. Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C., Janmey, P. A., Nonlinear elasticity in biological gels, Nature, 2005. 435: p. 191194 10.1038/nature03521Google Scholar
12. Courtney, T.H., Mechanical Behavior of Materials. 1990. McGraw-Hill Google Scholar
13. MacKerell, A.D. et al. , All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal Of Physical Chemistry B, 1998. 102(18): p. 35863616.Google Scholar
14. Lu, H., Isralewitz, B., Krammer, A., Vogel, V., Schulten, K., Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J., 1998. 75: p: 662671.10.1016/S0006-3495(98)77556-3Google Scholar
15. Humphrey, W., Dalke, A., and Schulten, K., VMD: Visual molecular dynamics. Journal of Molecular Graphs, 1996. 14 (1): p. 33 Google Scholar
16. Schwaiger, I., Sattler, C., Hostetter, D., Rief, M., The myosin coiled-coil is a truly elastic protein structure. Nature Materials, 2002. 1: p. 232235 Google Scholar
17. Akkermans, R. L. C., Warren, P. B., Multiscale modeling of human hair. Phil. Trans. R. Soc. Lond., 2004. 362: p. 17831793 Google Scholar
18. Bell, G. I., Models for the Specific Adhesion of Cells to Cells, Science, 1978. 200: p. 618627 Google Scholar