Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T14:51:00.654Z Has data issue: false hasContentIssue false

HgCdTe Surface Cleanup and Etch Using a Remote Hydrogen Plasma

Published online by Cambridge University Press:  15 February 2011

Patricia B. Smith*
Affiliation:
Texas Instruments Incorporated, Central Research Laboratories, Dallas, TX 75265
Get access

Abstract

Dry passivation of HgCdTe with ZnS or CdTe using physical or chemical vapor deposition can be improved by incorporating an in situ plasma cleanup of the HgCdTe surface prior to the deposition. Contamination at the HgCdTe/ dielectric interface from ambient oxide and hydrocarbon residues may lead to fixed charge in capacitor or diode device structures. In addition, the oxides of HgCdTe are known to be thermally unstable. Removal of the surface contamination layer is advantageous for producing a consistent and electrically reliable interface. We describe the interaction of a remotely generated H2 or H2/Ar plasma (2.45 GHz, 600W) with HgCdTe, using ex-situ and in-situ ellipsometry, and atomic force microscopy. This work represents the first effort to characterize a low damage HgCdTe surface cleanup process which is compatible with vacuum in-situ passivation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lu, Z., Jiang, Y., Wang, W. I., Teich, M. C. and Osgood, R. M. Jr.,, J. Vac. Sci. Technol. B 10 (4), 1856 (1992).Google Scholar
2. Yamazaki, T., Miyata, N., Aoyama, T. and Ito, T., J. Electrochem. Soc. 139 (4), 1175(1992).Google Scholar
3. Ditizio, R. A., Fonash, S. J. and Hseih, B.-C., J. Vac. Sci. Technol. A 10 (1), 59 (1992).Google Scholar
4. Nara, Y., Sugita, Y., Nakayama, N. and Ito, T., J. Vac. Sci. Technol. B 10 (1), 274 (1992).Google Scholar
5. Hattangady, S. V., Fountain, G. G., Alley, R. G., Rudder, R. A. and Markunas, R. J., J. Vac. Sci. Technol. A 9 (3), 1094 (1991).CrossRefGoogle Scholar
6. Lu, Z., Schmidt, M. T., Osgood, R. M. Jr.,, Holber, W. M. and Podlesnik, D. V., J. Vac. Sci. Technol. A 9 (3), 1040 (1991).CrossRefGoogle Scholar
7. Nowicki, R. S., Geraghty, P., Harris, D., Lux, G. and Johnson, D. J., J. Vac. Sci. Technol. A 9 (3), 1073 (1991).Google Scholar
8. Chang, R. P. H. and Darack, S., Appl. Phys. Lett. 38 (11), 898 (1981).CrossRefGoogle Scholar
9. Tu, C. W., Chang, R. P. H. and Schlier, A. R., J. Vac. Sci. Technol. A 1 (2), 637 (1983).Google Scholar
10. Seaward, K. L. and Moll, N. J., J. Vac. Sci. Technol. B 10 (1), 46 (1992).Google Scholar
11. Benton, J. L., Weir, B. E., Eaglesham, D. J., Gottscho, R. A., Michel, J. and Kimerling, L. C., J. Vac. Sci. Technol. B 10 (1), 540 (1992).Google Scholar
12. Saito, Y., Hirabaru, M. and Yoshida, A., J. Vac. Sci. Technol. B 10 (1), 175 (1992).Google Scholar
13. Fonash, S. J., J. Electrochem. Soc. 137 (12), 3885 (1990).Google Scholar
14. Pearton, S. J., Chakrabarti, U. K., Hobson, W. S. and Perley, A. P., J. Electrochem. Soc. 137 (10), 3188 (1990).Google Scholar
15. Misra, D. and Heasell, E. L., J. Electrochem. Soc. 137 (5), 1559 (1990).Google Scholar
16. Yapsir, A. S., Fortu˜o-Wiltshire, G., Gambino, J. P., Kastl, R. H. and Parks, C. C., J. Vac. Sci. Technol. A 8 (3), 2939 (1990).Google Scholar
17. Misra, D., J. Vac. Sci. Technol. A 10 (2), 301 (1992).Google Scholar
18. Buchanan, D. A. and Fortu˜o-Wiltshire, G., J. Vac. Sci. Technol. A 9 (3), 804 (1991).Google Scholar
19. Gambino, J. P., Monkowski, M. D., Shepard, J. F. and Parks, C. C., J. Electrochem. Soc. 137 (3), 976 (1990).Google Scholar
20. Lee, B. S. and Baratte, H., J. Electrochem. Soc. 137 (3), 980 (1990).Google Scholar
21. Cameron, N. I., Beaumont, S. P., Wilkinson, C. D. W., Johnson, N. P., Kean, A. H. and Stanley, C. R., J. Vac. Sci. Technol. B 8 (6), 1966 (1990).Google Scholar
22. Misra, D. and Heasell, E. L., J. Electrochem. Soc. 136 (1), 234 (1989).Google Scholar
23. Rydén, K.-H., Norström, H., Nender, C. and Berg, S., J. Electrochem. Soc. 134 (12), 3113 (1987).CrossRefGoogle Scholar
24. Manos, D. M. and Flamm, D. L., Plasma Etching., An Introduction (Academic Press, Inc., San Diego, CA, 1989), p. 67.Google Scholar
25. Luttmer, J. D., Davis, C. J., Smith, P. B., York, R. L., Loewenstein, L. M. and Jucha, R. B., U. S. Patent No. 4 838 984 (13 June 1989).Google Scholar
26. Wheeler, B., Experiments in a Chip (ECHIP, Hockessin, DE, 1989).Google Scholar
27. Duncan, W. M. and Henck, S. A., Appl. Surf. Sci. 63, 9 (1993).Google Scholar
28. Henck, S. A., Duncan, W. M., Loewenstein, L. M. and Butler, S. W., J. Vac. Sci. Technol. A, July/ August (1993), in press.Google Scholar
29. Files-Sesler, L. A., Randall, J. N. and Harkness, D., J. Vac. Sci. Technol. B 9 (2), 659 (1991).CrossRefGoogle Scholar
30. Strong, R. L., Gnade, B. E. and York, R. L. (unpublished).Google Scholar
31. Elkind, J. L. and Orloff, G. J., J. Vac. Sci. Technol. A 10 (4), 1106 (1992).Google Scholar