Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:37:30.939Z Has data issue: false hasContentIssue false

Hexagonal Silicon, a Stress-Induced Martesitic Transformation

Published online by Cambridge University Press:  26 February 2011

P. Pirouz
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106
R. Chaim
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106
U. Dahmen
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
Get access

Abstract

It is shown that indentation-induced formation of hexagonal silicon at the temperature range 400–700°C is fully consistent with its occurence via a martensitic transformation. After presenting HREM images of hexagonal ribbons in a diamond cubic matrix, a crystallographic analysis of the phase transformation is given, and a dislocation mechanism responsible for the transformation is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Materials Engineering, Technion Institute of Technology, Haifa 32000, Israel

References

REFERENCES

[1]Hu, J. Z., Merkle, L. D., Menoni, C. S., and Spain, I. L., Phys. Rev. B 34, 4679 (1987)Google Scholar
[2]Wentorf, R. H. Jr and Kasper, J. S., Science 139, 338 (1963).Google Scholar
[3]Yin, M. T. and Cohen, M. L., Phys. Rev. B 26, 5668 (1982).Google Scholar
[4]Eremenko, V. G. and Nikitenko, V. I., Phys. Stat. Sol. (a) 14, 317 (1972).Google Scholar
[5]Tan, T. Y., Foll, H., and Hu, S. M., Phil. Mag. A 44, 127 (1981).Google Scholar
[6]Pirouz, P., Chaim, R., and Samuels, J., Proc. 5th I-ntn. Congress on ‘The Structure and Properties of Dislocations in Semiconductors', Moscow, U.S.S.R, March 1986. Bull. Acad. Sci. U.S.S.R. (In press).Google Scholar
[7]Clarke, D. R., Kroll, C. M., Kirchner, P. D., Cook, R. F., and Hockey, B. J., Submitted to Phys. Rev. Lett. (1987).Google Scholar
[8]Samuels, J., private communication (1987).Google Scholar
[9]Demenet, J. L., Rabier, J., and Garem, H., in ‘Microscopy of Semiconducting Materials, 1987', Ed. Cullis, A. G. and Augustus, P. D., Inst. Phys. Conf. Ser. No. 87, pp. 355–360, (1987).Google Scholar
[10]Bourret, A., in ‘Microscopy of Semiconducting Materials, 1987', Ed. Cullis, A. G. & Augustus, P., Inst. Phys. Conf. Ser. #87, pp 39–48, (1987).Google Scholar
[11]Pirouz, P., Scripta Met. 21, 1463 (1987).Google Scholar
[12]Pirouz, P., Chaim, R., Dahmen, U., and Westmacott, K. H., in preparation.Google Scholar
[13]Dahmen, U., Westmacott, K. H., Pirouz, P., and Chaim, R., in preparation.Google Scholar
[14]Kelly, A. and Groves, G. W., ”Crystallography and Crystal Defects”, Longman, London (1970).Google Scholar
[15]Mahajan, S. and Chin, G. Y., Acta Met. 21, 173 (1973).Google Scholar
[16]Mahajan, S. and Chin, G. Y., Acta Met. M 22, 1113 (1974)Google Scholar